OXFORD CAMBRIDGE AND RSA EXAMINATIONS **Advanced GCE** CHEMISTRY 2814 Chains, Rings and Spectroscopy Wednesday 18 JUNE 2003 Afternoon 1 hour 30 minutes Candidates answer on the question paper. Additional materials: Data Sheet for Chemistry Scientific calculator | Candidate Name | Centre Number | Candidate
Number | |----------------|---------------|---------------------| | | | | TIME 1 hour 30 minutes #### **INSTRUCTIONS TO CANDIDATES** - Write your name in the space above. - Write your Centre number and Candidate number in the boxes above. - Answer all the questions. - Write your answers in the spaces provided on the question paper. - Read each question carefully and make sure you know what you have to do before starting your answer. #### INFORMATION FOR CANDIDATES - The number of marks is given in brackets [] at the end of each question or part question. - You will be awarded marks for the quality of written communication where this is indicated in the question. - You may use a scientific calculator. - You may use the Data Sheet for Chemistry. - You are advised to show all the steps in any calculations. | FOR EXAMINER'S USE | | | |--------------------|---------|------| | Qu. | Max. | Mark | | 1 | 12 | | | 2 | 12 | | | 3 | 12 | | | 4 | 8 | | | 5 | 12 | | | 6 | 10 | | | 7 | 9 | | | 8 | 10 | | | 9 | 5 | | | TOTAL | 90 | | | 9 | 10
5 | | This question paper consists of 15 printed pages and 1 blank page. 2 #### For Examiner's Use #### Answer all the questions. | 1 | (a) (i) | Name the co | ompound CH ₃ CHO. | | |---|---------|--------------|---|--| | | | | | [1] | | | (ii) | Name the fu | nctional group of CH ₃ CH0 |)[1] | | | (iii) | Draw structu | ıral formulae for the orgar | ic products of the reactions below. | | | | СН₃СНО | NaBH₄ | | | | | СН₃СНО | ammoniacal AgNO ₃ (Tollens' reagent) | [2] | | | (b) (i) | | | obbilic addition. Use the mechanism of the presence of KCN in your answer. | | | | | | | | | | | | | 3 | For | |------------| | Examiner's | | lise | | (ii) | Explain why this reaction is not normally carried out in a school or college laboratory. | |-------|--| | | [1] | | (iii) | Will the product consist of optical isomers or not? Explain your answer. | | | *************************************** | | | | | | [2] | | | Total: 12 | [Turn over 4 For Examiner's Use [1] 2 Compound A, $C_6H_5CH(CH_3)_2$, can be made by heating benzene with 2-chloropropane in the presence of a catalyst. (a) (i) Draw the structural formula of 2-chloropropane. (ii) Write the equation for the synthesis of A. [1] (iii) Suggest the type of catalyst required. [1] **(b)** The n.m.r. spectrum of **A**, $C_6H_5CH(CH_3)_2$, is shown below. 5 | (1) | For each group of peaks, explain your reasoning in terms of the chemical shift value. | |-------|---| | | x | | | ······································ | | | Υ | | | _ | | | Z | | /IIX | Evaloin why posts Y is split into a doubter | | (ii) | Explain why peak X is split into a doublet. | | | ······································ | | | [2] | | (iii) | Suggest a reason why peak Y is split into many lines. | | () | | | | | | | [1] | | | [Total: 12] | | | | 6 For Examiner's Use | 3 | harı | mful | of some samples of soy sauce recently showed the presence of the potentially chemical 3-chloropropane-1,2-diol. Ild be formed from soya oil during the hydrolysis of soya. | |---|------|-------|---| | | (a) | (i) | Draw a displayed formula for 3-chloropropane-1,2-diol. | | | | | | | | | | [2] | | | | (ii) | Does your displayed formula contain a chiral centre? Explain your answer. | | | | | | | | | | [1] | | | (b) | In ti | nis question, one mark is available for the quality of written communication. | | | | | plain how two spectroscopic techniques could be used to confirm the presence of OH group in an organic compound such as 3-chloropropane-1,2-diol or ethanol. | | | | | | | | | • | | | | | | | | | | •••• | | | | | •••• | | | | | | | | | | •••• | | | | | | | | | | | | | | | | | Quality of Written Communication [1] [5] 7 | (c) Soya is a useful source of protein for vegetarians.
Soya protein can be hydrolysed in the laboratory. | | | |--|------------|---| | | (i) | State the reagent used. | | | | [1] | | | (ii) | Draw a displayed formula for the functional group which is hydrolysed in the protein. | | | | | | | | | | | | | | | / \ | | | • | (iii) | State the class of organic compounds produced by hydrolysis of proteins. | | | | [1] | | | | [Total: 12] | 8 #### **BLANK PAGE** 9 | | iqued
ther. | ous solution, some organic compounds are bases and some are acids; others are | |-----|----------------|---| | (a) | | ntify an organic compound that acts as an acid in water, and give an equation to w this behaviour. | | | nan | ne or formula | | | equ | ation[2] | | (b) | Phe | enylamine, C ₆ H ₅ NH ₂ , acts as a base in water. | | | (i) | Give an equation to show this behaviour. | | | | [1] | | | (ii) | Explain why phenylamine is a weaker base than ethylamine, C ₂ H ₅ NH ₂ . | [3] | | (c) | | ntify an organic compound which can act both as an acid and as a base. Explain r answer. | | | nan | ne or formula | | | ехр | lanation | | | | | | | | | | | | [2] | | | | [Total: 8] | For Examiner's Use | | | IU | |---|--|---| | 5 | Benzene and phenylethene are aromatic hydrocarbons. Phenylethene also has an alkene group in its side chain, and shows reactions typical of both arenes and alkenes. | | | | (a) | In this question, one mark is available for the quality of written communication. | | | | Describe the bonding in benzene . Include in your answer the model used for the arrangement of electrons. | · | | | | | | | | | | | | | | | | [5] | | | | Quality of Written Communication [1] | | | (b) | Phenylethene, C ₆ H ₅ CH=CH ₂ , reacts readily with bromine in an inert solvent. Benzene | | | \~ J | , | reacts with bromine only in the presence of a catalyst. (i) Draw the structural formula of the organic product obtained when phenylethene reacts with bromine in an inert solvent. 11 | For | |------------| | Examiner's | | Hen | | (11) | Explain why benzene reacts less readily than p | phenylethene with bromine. | |-------|--|----------------------------| [4] | | Stat | te one major use for phenylethene. | | | ••••• | | [1] | | | · | [Total: 12] | | | Sta | | 6 12 | For | |------------| | Examiner's | | Hoo | | Cor | Compound B is a secondary iodoalkane, C ₄ H ₉ I. | | | | | | | |-----|---|--|--|--|--|--|--| | (a) | Deduce the mass:charge ratio (m/e) of the molecular ion in the mass spectrum of B . | | | | | | | | | **** | [1] | | | | | | | (b) | When \mathbf{B} , $\mathbf{C}_4\mathbf{H}_9\mathbf{I}$, is reacted with hot ethanolic sodium hydroxide, $\mathbf{H}\mathbf{I}$ is eliminated and three isomeric alkenes \mathbf{C} , \mathbf{D} and \mathbf{E} are formed. \mathbf{C} , \mathbf{D} and \mathbf{E} form the same compound, \mathbf{F} , when reacted with hydrogen in the presence of a palladium catalyst. | | | | | | | | | (i) | Suggest structural formulae for B, C, D, E and F. Give your reasoning. | [8] | | | | | | | | (ii) Classify the type of reaction in which C, D or E is converted into F using hydrogen and a palladium catalyst. | | | | | | | | | | [1] | | | | | | | | | [Total: 10] | | | | | | 13 | () | (i) | State the reagents required for the preparation of phenylamine from nitrobenzene. | | | | | | |------------|--|--|--|--|--|--|--| | | (ii) | A student obtained 6.80 g phenylamine starting from 10.0 g nitrobenzene Calculate the percentage yield of phenylamine. Give your answer to thre significant figures. | answer[4 | | | | | | | b) | State the reagents and conditions needed to make a diazonium salt from phenylamine | | | | | | | | | reag | ents | | | | | | | | | | | | | | | | , | conc | ditions | | | | | | | | | [3 | | | | | | 14 For Examiner's Use - 8 There are two major types of polymerisation: addition polymerisation and condensation polymerisation. - (a) (i) Propene undergoes addition polymerisation. Give a balanced equation for this polymerisation, using structural formulae. [2] | (ii) | Explain to polymeris | he e
atior | differences
n. | between | addition | polymerisation | and | condensation | |------|----------------------|---------------|---|------------------|----------|---------------------|---|---| | | | ••••• | ****************** | ************** | | | • | •••••• | | | | | ************* | ************ | | | ••••• | | | | | | *************************************** | | | ******************* | | *************************************** | | | | | | | | | | | | | | ****** | **************** | **************** | | •••••••••••••• | ••••• | *************************************** | | | *********** | | | | | | | [2] | (b) Polymer G is also formed by addition polymerisation. a section of polymer G Deduce the structure of a monomer from which G could be made. [1] 15 For Examiner's Use (c) The monomer shown below can form a condensation polymer, H. (i) Suggest a structure for the polymer, showing two repeat units. [2] | (ii) | Concentrated aqueous NaOH solution can be transported in containers made of poly(propene) but not in containers made of polymer H . Suggest reasons for this difference. | |------|---| [3] | | | [J] | | | [Total: 10] | From the information given, draw the structural formula for each organic compound. 16 For Examiner's Use | (a) | This compound is made by reaction of benzene with concentrated presence of concentrated sulphuric acid. | nitric acid in the | |-----|--|---------------------| | | | | | | | [1] | | (b) | These two compounds react together in the presence of concentrated make methyl ethanoate, $\mathrm{CH_3COOCH_3}$. | d sulphuric acid to | | | | | | | | [2] | | (c) | These two different compounds can be made by reaction of $C_6H_5CH(CH_3CH(NH_2)COOH$. | [2] | | | | [Total: 5] | | | | | Acknowledgement. 9 SDBS Web: http://www.aist.go.jp/RIODB/SDBS/21.06.02 OCR has made every effort to trace the copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.