

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2814

Chains, Rings and Spectroscopy

Wednesday

18 JUNE 2003

Afternoon

1 hour 30 minutes

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	12	
2	12	
3	12	
4	8	
5	12	
6	10	
7	9	
8	10	
9	5	
TOTAL	90	
9	10 5	

This question paper consists of 15 printed pages and 1 blank page.

2

For Examiner's Use

Answer all the questions.

1	(a) (i)	Name the co	ompound CH ₃ CHO.	
				[1]
	(ii)	Name the fu	nctional group of CH ₃ CH0)[1]
	(iii)	Draw structu	ıral formulae for the orgar	ic products of the reactions below.
		СН₃СНО	NaBH₄	
		СН₃СНО	ammoniacal AgNO ₃ (Tollens' reagent)	[2]
	(b) (i)			obbilic addition. Use the mechanism of the presence of KCN in your answer.

3

For
Examiner's
lise

(ii)	Explain why this reaction is not normally carried out in a school or college laboratory.
	[1]
(iii)	Will the product consist of optical isomers or not? Explain your answer.

	[2]
	Total: 12

[Turn over

4

For Examiner's Use

[1]

2 Compound A, $C_6H_5CH(CH_3)_2$, can be made by heating benzene with 2-chloropropane in the presence of a catalyst.

(a) (i) Draw the structural formula of 2-chloropropane.

(ii) Write the equation for the synthesis of A.

[1]

(iii) Suggest the type of catalyst required.

[1]

(b) The n.m.r. spectrum of **A**, $C_6H_5CH(CH_3)_2$, is shown below.

5

(1)	For each group of peaks, explain your reasoning in terms of the chemical shift value.
	x
	······································
	Υ
	_
	Z
/IIX	Evaloin why posts Y is split into a doubter
(ii)	Explain why peak X is split into a doublet.
	······································
	[2]
(iii)	Suggest a reason why peak Y is split into many lines.
()	
	[1]
	[Total: 12]

6

For Examiner's Use

3	harı	mful	of some samples of soy sauce recently showed the presence of the potentially chemical 3-chloropropane-1,2-diol. Ild be formed from soya oil during the hydrolysis of soya.
	(a)	(i)	Draw a displayed formula for 3-chloropropane-1,2-diol.
			[2]
		(ii)	Does your displayed formula contain a chiral centre? Explain your answer.
			[1]
	(b)	In ti	nis question, one mark is available for the quality of written communication.
			plain how two spectroscopic techniques could be used to confirm the presence of OH group in an organic compound such as 3-chloropropane-1,2-diol or ethanol.
		•	
		••••	
		••••	
		••••	

Quality of Written Communication [1]

[5]

7

(c) Soya is a useful source of protein for vegetarians. Soya protein can be hydrolysed in the laboratory.		
	(i)	State the reagent used.
		[1]
	(ii)	Draw a displayed formula for the functional group which is hydrolysed in the protein.
	/ \	
•	(iii)	State the class of organic compounds produced by hydrolysis of proteins.
		[1]
		[Total: 12]

8

BLANK PAGE

9

	iqued ther.	ous solution, some organic compounds are bases and some are acids; others are
(a)		ntify an organic compound that acts as an acid in water, and give an equation to w this behaviour.
	nan	ne or formula
	equ	ation[2]
(b)	Phe	enylamine, C ₆ H ₅ NH ₂ , acts as a base in water.
	(i)	Give an equation to show this behaviour.
		[1]
	(ii)	Explain why phenylamine is a weaker base than ethylamine, C ₂ H ₅ NH ₂ .
		[3]
(c)		ntify an organic compound which can act both as an acid and as a base. Explain r answer.
	nan	ne or formula
	ехр	lanation
		[2]
		[Total: 8]

For Examiner's Use

		IU
5	Benzene and phenylethene are aromatic hydrocarbons. Phenylethene also has an alkene group in its side chain, and shows reactions typical of both arenes and alkenes.	
	(a)	In this question, one mark is available for the quality of written communication.
		Describe the bonding in benzene . Include in your answer the model used for the arrangement of electrons.
		·
		[5]
		Quality of Written Communication [1]
	(b)	Phenylethene, C ₆ H ₅ CH=CH ₂ , reacts readily with bromine in an inert solvent. Benzene
	\~ J	, , , , , , , , , , , , , , , , , , , ,

reacts with bromine only in the presence of a catalyst.

(i) Draw the structural formula of the organic product obtained when phenylethene reacts with bromine in an inert solvent.

11

For
Examiner's
Hen

(11)	Explain why benzene reacts less readily than p	phenylethene with bromine.
		[4]
Stat	te one major use for phenylethene.	
•••••		[1]
	·	[Total: 12]
	Sta	

6

12

For
Examiner's
Hoo

Cor	Compound B is a secondary iodoalkane, C ₄ H ₉ I.						
(a)	Deduce the mass:charge ratio (m/e) of the molecular ion in the mass spectrum of B .						
	****	[1]					
(b)	When \mathbf{B} , $\mathbf{C}_4\mathbf{H}_9\mathbf{I}$, is reacted with hot ethanolic sodium hydroxide, $\mathbf{H}\mathbf{I}$ is eliminated and three isomeric alkenes \mathbf{C} , \mathbf{D} and \mathbf{E} are formed. \mathbf{C} , \mathbf{D} and \mathbf{E} form the same compound, \mathbf{F} , when reacted with hydrogen in the presence of a palladium catalyst.						
	(i)	Suggest structural formulae for B, C, D, E and F. Give your reasoning.					
		[8]					
	(ii) Classify the type of reaction in which C, D or E is converted into F using hydrogen and a palladium catalyst.						
		[1]					
		[Total: 10]					

13

()	(i)	State the reagents required for the preparation of phenylamine from nitrobenzene.					
	(ii)	A student obtained 6.80 g phenylamine starting from 10.0 g nitrobenzene Calculate the percentage yield of phenylamine. Give your answer to thre significant figures.					
		answer[4					
b)	State the reagents and conditions needed to make a diazonium salt from phenylamine						
	reag	ents					
,	conc	ditions					
		[3					

14

For Examiner's Use

- 8 There are two major types of polymerisation: addition polymerisation and condensation polymerisation.
 - (a) (i) Propene undergoes addition polymerisation.

Give a balanced equation for this polymerisation, using structural formulae.

[2]

(ii)	Explain to polymeris	he e atior	differences n.	between	addition	polymerisation	and	condensation
		•••••	******************	**************			• • • • • • • • • • • • • • • • • • • •	••••••
			*************	************			•••••	
			***************************************			*******************		***************************************
		******	****************	****************		••••••••••••••	•••••	***************************************
	***********							[2]

(b) Polymer G is also formed by addition polymerisation.

a section of polymer G

Deduce the structure of a monomer from which G could be made.

[1]

15

For Examiner's Use

(c) The monomer shown below can form a condensation polymer, H.

(i) Suggest a structure for the polymer, showing two repeat units.

[2]

(ii)	Concentrated aqueous NaOH solution can be transported in containers made of poly(propene) but not in containers made of polymer H . Suggest reasons for this difference.
	[3]
	[J]
	[Total: 10]

From the information given, draw the structural formula for each organic compound.

16

For Examiner's Use

(a)	This compound is made by reaction of benzene with concentrated presence of concentrated sulphuric acid.	nitric acid in the
		[1]
(b)	These two compounds react together in the presence of concentrated make methyl ethanoate, $\mathrm{CH_3COOCH_3}$.	d sulphuric acid to
		[2]
(c)	These two different compounds can be made by reaction of $C_6H_5CH(CH_3CH(NH_2)COOH$.	
		[2]
		[Total: 5]

Acknowledgement.

9

SDBS Web: http://www.aist.go.jp/RIODB/SDBS/21.06.02

OCR has made every effort to trace the copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.