Downloaded from http://www.thepaperbank.co.uk

CHAINS + RINGS
Mark Scheme 2812
June 2003

Downloaded from http://www.thepaperbank.co.uk

The following annotations may be used when marking:

X = incorrect response (errors may also be underlined)

* = omission mark

bod = benefit of the doubt (where professional judgement has been used)

ecf = error carried forward (in consequential marking)

con = contradiction (in cases where candidates contradict themselves in the

same response)

sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

/ = alternative and acceptable answers for the same marking point

; = separates marking points NOT = answers not worthy of credit

words which are not essential to gain credit

(underlining) = key words which must be used

ecf = allow error carried forward in consequential marking

AW = alternative wording or reverse argument

2812 Mark Scheme June 2003

1.
(a)(i) → each by its own A, to give 5 : 13.3 : 1.67 ✓ [1]

+ each by 1.67 to give 3 : 8 : 1 ✓ [1]

(ii) Evidence of working e.g. 36 + 8 + 16 = 60 / that C_3H_8O adds up to 60 / [1]

(b) unambiguous structure/formula of propan-1-ol & propan-2-ol to include:

(c)(i) dichromate/ Cr₂O₇² /MnO₄ [1]

(ii) orange to green

purple to green/brown/black/pink/colourless

✓ [2]

(iii) continuous boiling/evaporation and condensation /
heating & return of liquid to reaction flask/
simple sketch showing vertical condenser & heat
(any reference to a closed system negates the mark)

[1]

(iii) carboxylic acid/-CO₂H/-COOH ✓ [1]

(e) propan-1-ol (no marks)
propan-1-ol oxidised to a carboxylic acid/

✓ [1]

[Total: 15]

[2]

2. (a)(i) (ii)	1,1-dibromoethene CHBr	√	[1] [1]
(b)(i) (ii)	(Br ₂ is) decolourised electrophilic addition	√	[1] [1] [1]

- allow names & unambiguous formulae throughout part (c) (c)
 - Isomer C reacts with H₂. (i)

(ii)

(iii)

phosphoric acid (catalyst) conditions temp ≥ 100 °C/ steam

[Total: 12]

2812	Mark Scheme	June 2003			
3. (a)	non-polar	✓	[1]		
	hence particles not attracted to methane	1	[1]		
(b)	(free radical) substitution	✓	[1]		
	• $CH_4 + Br_2 \rightarrow CH_3Br + HBr$	1	[1]		
	ultra violet/UV light	1	[1]		
	 Br₂ → 2 Br 	✓	[1]		
	homolysis/ homolytic fission	✓	[1]		
	 Br• + CH₄ → •CH₃ + HBr 	✓	[1]		
	• •CH ₃ + Br ₂ \rightarrow CH ₃ Br + Br•	✓	[1]		
	 any two free radicals 2 Br → Br₂ 	1	[1]		
	free rads are difficult to control/react with anything/very reactive	1	[1]		
	identifies one of CH ₂ Br ₂ / CHBr ₃ / CBr ₄ or can be polysubstituted	✓	[1]		
		[10 ma	ax = 9]		
	1 QWC mark is available for using specific chemical terms.				
	chemical terms: initiation, propagation, termination, free radical substitution, homolysis/ homolytic fission, photochemical				
	any two terms used correctly	✓	[1]		

[Total : 11]

marking points:

dipoles

curly arrow from OH to C^{δ^+}

curly arrow from C-Cl bond to Cl

√√√ [3]

(b)(i) Fastest - 1-iodobutane & slowest 1-chlorobutane

[1]

(ii) C-I has the weakest bond/ C-Cl has the strongest bond

√ [1]

[Total : 6]

	Bowindadda irom mip.//www.mopaporbamicoo	·	
2812	Mark Scheme	June	2003
5. (a)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	✓	[1]
(b) (i)	M_r of $C_6H_{12}O_6 = 180$	✓	[1]
	200 moles (0.2 will be a common error)	✓	[1]
	(ii) 400 moles/ ecf to (a)(ii) *2	✓	[1]
	(iii) 50 moles	✓	[1]
	(iv) (iii)/(ii) x 100 = 12.5%	✓	[1]
(c) (i)	(must <u>name</u>) aidehyde/carbonyl	✓	[1]
(I)	CH ₃ CO ₂ H/ CO ₂	✓	[1]
(d)	$CH_3OH + [O] \rightarrow HCHO/CH_2O + H_2O$	11	[2]
(e)(i)	$CH_3OH + 1^{1}/_{2}O_2 \rightarrow CO_2 + 2H_2O / 2CH_3OH + 3O_2 \rightarrow 2CO_2 +$	4H ₂ O √	[1]
(ii)	burns more cleanly/ reduces CO(g) emissions / reduces benzene emisless pollutants/ higher octane rating(number)/less knocking/ / improve better fuel/ burns more cleanly/ absorbs free radicals/ oxygenates		tion/ [1]
(f)(i)	CH ₃ OH + CO → CH ₃ CO ₂ H	•	[1]
(ii)	H,C C OH,C C OH,C C OH,C C O		[1]
(iii)	H H OOCCH3		[1]

[Total : 15]