Downloaded from http://www.thepaperbank.co.uk CHAINS + RINGS Mark Scheme 2812 June 2003 Downloaded from http://www.thepaperbank.co.uk The following annotations may be used when marking: X = incorrect response (errors may also be underlined) * = omission mark bod = benefit of the doubt (where professional judgement has been used) ecf = error carried forward (in consequential marking) con = contradiction (in cases where candidates contradict themselves in the same response) sf = error in the number of significant figures Abbreviations, annotations and conventions used in the Mark Scheme: / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers not worthy of credit words which are not essential to gain credit (underlining) = key words which must be used ecf = allow error carried forward in consequential marking AW = alternative wording or reverse argument 2812 Mark Scheme June 2003 1. (a)(i) → each by its own A, to give 5 : 13.3 : 1.67 ✓ [1] + each by 1.67 to give 3 : 8 : 1 ✓ [1] (ii) Evidence of working e.g. 36 + 8 + 16 = 60 / that C_3H_8O adds up to 60 / [1] (b) unambiguous structure/formula of propan-1-ol & propan-2-ol to include: (c)(i) dichromate/ Cr₂O₇² /MnO₄ [1] (ii) orange to green purple to green/brown/black/pink/colourless ✓ [2] (iii) continuous boiling/evaporation and condensation / heating & return of liquid to reaction flask/ simple sketch showing vertical condenser & heat (any reference to a closed system negates the mark) [1] (iii) carboxylic acid/-CO₂H/-COOH ✓ [1] (e) propan-1-ol (no marks) propan-1-ol oxidised to a carboxylic acid/ ✓ [1] [Total: 15] [2] | 2.
(a)(i)
(ii) | 1,1-dibromoethene
CHBr | √ | [1]
[1] | |----------------------|---|----------|-------------------| | (b)(i)
(ii) | (Br ₂ is) decolourised electrophilic addition | √ | [1]
[1]
[1] | - allow names & unambiguous formulae throughout part (c) (c) - Isomer C reacts with H₂. (i) (ii) (iii) phosphoric acid (catalyst) conditions temp ≥ 100 °C/ steam [Total: 12] | 2812 | Mark Scheme | June 2003 | | | | |-----------|--|-----------|---------|--|--| | 3.
(a) | non-polar | ✓ | [1] | | | | | hence particles not attracted to methane | 1 | [1] | | | | (b) | (free radical) substitution | ✓ | [1] | | | | | • $CH_4 + Br_2 \rightarrow CH_3Br + HBr$ | 1 | [1] | | | | | ultra violet/UV light | 1 | [1] | | | | | Br₂ → 2 Br | ✓ | [1] | | | | | homolysis/ homolytic fission | ✓ | [1] | | | | | Br• + CH₄ → •CH₃ + HBr | ✓ | [1] | | | | | • •CH ₃ + Br ₂ \rightarrow CH ₃ Br + Br• | ✓ | [1] | | | | | any two free radicals 2 Br → Br₂ | 1 | [1] | | | | | free rads are difficult to control/react with anything/very reactive | 1 | [1] | | | | | identifies one of CH ₂ Br ₂ / CHBr ₃ / CBr ₄ or can be polysubstituted | ✓ | [1] | | | | | | [10 ma | ax = 9] | | | | | 1 QWC mark is available for using specific chemical terms. | | | | | | | chemical terms: initiation, propagation, termination, free radical substitution, homolysis/ homolytic fission, photochemical | | | | | | | any two terms used correctly | ✓ | [1] | | | [Total : 11] marking points: dipoles curly arrow from OH to C^{δ^+} curly arrow from C-Cl bond to Cl **√√√** [3] (b)(i) Fastest - 1-iodobutane & slowest 1-chlorobutane [1] (ii) C-I has the weakest bond/ C-Cl has the strongest bond **√** [1] [Total : 6] | | Bowindadda irom mip.//www.mopaporbamicoo | · | | |---------------|---|----------------------------|--------------| | 2812 | Mark Scheme | June | 2003 | | 5. (a) | $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ | ✓ | [1] | | (b) (i) | M_r of $C_6H_{12}O_6 = 180$ | ✓ | [1] | | | 200 moles (0.2 will be a common error) | ✓ | [1] | | | (ii) 400 moles/ ecf to (a)(ii) *2 | ✓ | [1] | | | (iii) 50 moles | ✓ | [1] | | | (iv) (iii)/(ii) x 100 = 12.5% | ✓ | [1] | | (c) (i) | (must <u>name</u>) aidehyde/carbonyl | ✓ | [1] | | (I) | CH ₃ CO ₂ H/ CO ₂ | ✓ | [1] | | (d) | $CH_3OH + [O] \rightarrow HCHO/CH_2O + H_2O$ | 11 | [2] | | (e)(i) | $CH_3OH + 1^{1}/_{2}O_2 \rightarrow CO_2 + 2H_2O / 2CH_3OH + 3O_2 \rightarrow 2CO_2 +$ | 4H ₂ O √ | [1] | | (ii) | burns more cleanly/ reduces CO(g) emissions / reduces benzene emisless pollutants/ higher octane rating(number)/less knocking/ / improve better fuel/ burns more cleanly/ absorbs free radicals/ oxygenates | | tion/
[1] | | (f)(i) | CH ₃ OH + CO → CH ₃ CO ₂ H | • | [1] | | (ii) | H,C C OH,C C OH,C C OH,C C O | | [1] | | (iii) | H H OOCCH3 | | [1] | [Total : 15]