

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2815/05

Gases, Liquids and Solids

Wednesday

29 JANUARY 2003

Afternoon

50 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name		Centre Number						Candidate Number		

TIME 50 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE					
Qu.	Max.	Mark			
1	8				
2	13				
3	13				
4	11				
TOTAL	45				

2

For Examiner's Use

Answer all the questions.

(a)	To w	hat type of mixtures does Henry's Law apply?						
` ,		[1]						
(b)	Air contains about 80% nitrogen and 20% oxygen. Water at 25 °C is allowed to come to equilibrium with air at 100 kPa pressure.							
	(i)	What is the partial pressure of oxygen in air at 100 kPa?						
	(ii)	The Henry's Law constant for oxygen at 25 °C and 100 kPa pressure is 1.3 x 10 ⁻⁵ mol dm ⁻³ kPa ⁻¹ .						
		Calculate the concentration of oxygen in water under these conditions.						
		answer mol dm ⁻³ [2]						
	(iii)	Calculate the mass of oxygen that would be dissolved in 1.0 dm ³ of water under these conditions.						
		answerg [1]						

3

For Examiner's

(c)	State two similarities between Henry's Law and the partition coefficient.	Us
		1
	[2]	
(d)	Sulphur dioxide gas is a pollutant. When it dissolves in water it does not obey Henry's Law. Suggest a reason for this.	ļ.
	[1]	
	[Total: 8]	I

2	(a)	(i)	State Raoult's Law.
			[2]
		(ii)	Explain what combination of liquids obeys Raoult's Law.
			[2]
	(b)	Fia.	2.1 shows the vapour pressures of mixtures of two liquids, X and Y .
	(~)	9.	2.1 cheme the tapear procedure of mixtance of the liquide, it and 1.
			↑
			vapour pressure
			1000/
			100% M N 100% X composition Y
			Fig. 2.1
		(i)	State, with reasons, which of the following pairs of liquids is most likely to behave like X and Y .
			A methanol and ethanol B ethanol and hexane C pentane and hexane
			·
			[3]
		(ii)	What is the name given to the mixture of composition N?
			[1]
		(iii)	A sample of liquid of composition M is fractionally distilled. Use Fig. 2.1 to explain
		. ,	why the first fraction has a composition N .
			[1]

5

For Examiner's Use

(c)		ctional distillation can be used to obtain a reasonably pure sample of a liquid from a ture of two miscible liquids.
	Stat liqui	e two circumstances in which fractional distillation will not separate two miscible ds.
	••••	
		[61
		[2]
(d)	In th	ne laboratory, fractionating columns are often packed with glass beads.
	(i)	What is the purpose of these?
		F. 1
		[1]
	(ii)	In an industrial fractionating column, what is used instead of glass beads?
		[1]
		[Total: 13]

6

3

For Examiner's Use

(a)	Use your knowledge of molecular energies to explain how a spill of water can evaporate even though the temperature never exceeds 25 °C.					
	[3]					
(b)	In this question, one mark is awarded for the quality of written communication.					
	Discuss the basic assumptions of kinetic theory, when applied to an ideal gas. In your answer, explain why gases do not behave in an ideal way under certain conditions.					
	[6]					
	Quality of Written Communication [1]					

7

For Examiner's Use

(c) The molar mass of a volatile liquid can be determined by vaporising a known mass of the liquid and measuring the volume of vapour produced. In such an experiment, 0.270 g of an organic liquid produced 80.0 cm³ of vapour at 65 °C.

Calculate the molar mass of the liquid. (pressure $p = 101\ 000\ Pa$; the gas constant $R = 8.31\ J\ K^{-1}\ mol^{-1}$)

molar mass g mol⁻¹ [3]

[Total: 13]

[4]

- 4 Water behaves in a different way to most liquids when it is cooled.
 - (a) (i) On the axes provided, sketch and label the phase diagram of water.

On your sketch

- label the triple point
- label the regions where ice, steam and liquid water would exist.

(ii) Water shows unusual properties when it is cooled. State **one** of these properties.

[1]

(b) Suggest and explain why the 'steam' from a kettle is invisible as it leaves the spout, but can be seen a few inches away.

[2]

(c) Fig. 4.1 shows the phase diagram for the zinc-cadmium system.

Fig. 4.1

(i) What name is given to the solid formed when a mixture of composition **E** is cooled?

(ii) Fig. 4.2 shows the cooling curve for a mixture of composition **E** from 350 °C to 250 °C. Label each section of the curve by stating what is taking place.

Fig. 4.2

[2]

(iii) What phases are present in a mixture containing 60% zinc at 325 °C?

......[1]