

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2815/04

Methods of Analysis and Detection

Wednesday

29 JANUARY 2003

Afternoon

50 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	(Centi	e Ni	umb	er	(Candi Num	

TIME 50 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE			
Qu.	Max.	Mark	
1	8		
2	15		
3	12		
4	10		
TOTAL	45		

2

Answer all the questions.

1

Whe		n atom of an element such as krypton is excited, the spectrum consists of a series of
(a)	Wh	y do spectra such as that of krypton consist of lines?
		[2]
(b)	(i)	Explain what is meant by the term convergence limit.
		[1]
	(ii)	Sketch a spectrum to show a convergence limit, labelling that point.
		frequency / Hz —
		[2]
(c)	The	emission spectrum of atomic krypton has a line at a wavelength of 557 nm.
	Cal	culate the energy of the quantum of electromagnetic radiation which gives this line. the Planck constant = $6.63 \times 10^{-34} \text{ J}\text{ s}$;
		the velocity of light = $3.00 \times 10^8 \mathrm{m s^{-1}}$.
		answer J [2]
(d)		e one example of the use of atomic emission spectroscopy in modern analytical inniques.
	••••	[1]
		[Total: 8]

3

2		omatography is the name given to a range of techniques which may be used to separate tures. The techniques use the principles of partition and adsorption.
	(a)	Give one example of partition chromatography and one of adsorption chromatography.
		partition
		adsorption
		[2]
	(b)	What does the term retention time, as used in gas/liquid chromatography, mean?
		[1]
	(c)	Using gas/liquid chromatography as an example, state clearly what is meant by the following terms.
		mobile phase
		stationary phase
		[2]

(d) The diagram shows the output from a gas/liquid chromatograph. Determine the percentage of each component in the mixture.

percentage A	
percentage B	
nercentage C	વિ

5

F_Or Examiner's Use

.ITotal: 151

(e) in this	s question.	one mark	is awarded	ior trie	quality (o writteri	communication
-------------	-------------	----------	------------	----------	-----------	------------	---------------

Another separation technique is electrophoresis, which is used for separating biological molecules.

- Describe a simple experiment to illustrate electrophoresis.
- During electrophoresis, different amino acids move in different directions, or do not move at all. Explain why.

[6]
Quality of Written Communication [1]

6

For Examiner's

3	spe	arge number of organic compounds absorb energy in the ultraviolet/visible region of the actrum. This occurs as a result of transitions between electronic energy levels in lecules.
	(a)	Give two features in organic molecules which are responsible for absorptions in the ultraviolet/visible region.
		feature 1
		feature 2[2]
	(b)	Predict which of the molecules shown will absorb in the ultraviolet/visible region, by circling the relevant molecules.
		CH ₃ CH ₂ OH CH ₃ CH ₃ CH ₃ CHO
		[2]
	(c)	Compounds D and E are shown below.
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		compound D compound E
		Compound ${\bf D}$ is colourless and absorbs in the ultraviolet region. Compound ${\bf E}$ is pale yellow, absorbing in the visible region of the spectrum.
		Explain why there is a difference in the absorptions of the two compounds.

7

(d)	bro	ydrocarbon ${f F}$ absorbs in the ultraviolet region of the spectrum. When ${f F}$ reacts with mine, a new compound ${f G}$ is formed. The original absorption disappears and a new k appears in a different part of the ultraviolet region.
	(i)	Suggest what structural feature is responsible for the absorption in F .
		[1]
	(ii)	Suggest why compound G shows a new absorption in the ultraviolet region.
		[2]
(e)		mass spectrum of \mathbf{F} shows a small (M + 1) peak, whereas that of \mathbf{G} shows both a all (M + 1) peak and an (M + 2) peak.
	Sug	gest explanations for these observations.
	••••	[2]
		[Total: 12]

8

For Examiner's Use

4 A compound **J** is known to have one of the structures shown below.

H—-C	CH ₃ C	CH ₃ CH ₂ C
OCH ₂ CH ₃	OCH ₃	ОН
1	11	III

(a)	(i)		infrared spectrum of $\bf J$ showed a strong broad peak at 3450 cm ⁻¹ . State which cture this suggests for $\bf J$, outlining your reasoning.
		•••••	
		••••	[2]
	(ii)	qua	nuclear magnetic resonance spectrum of $\bf J$ includes a triplet of peaks and a rtet of peaks. Addition of $\rm D_2O$ to $\bf J$ causes another peak in the spectrum to appear.
		•	explain which groups of protons in the molecule are responsible for the triplet and quartet of peaks.
		•	explain why the other peak disappears on addition of $\mathrm{D}_2\mathrm{O}$.

9

(b)	(i)	Explain how the addition of $\mathrm{D_2O}$ to \mathbf{J} could be used to distinguish between structures \mathbf{I} and \mathbf{III} .
		[2]
	(ii)	Suggest how the mass spectrum of ${\bf J}$ might provide additional evidence for its structure.
		[2]
		[Total: 10]