Subject: Methods of Analysis & Detection Code: 2815/04 Session: January Year: 2003 Mark Scheme MAXIMUM MARK 45 | Mark | Unit Code | Session | Year | Version | |--|--|---|-------------------|----------| | Scheme | 2815/04 | January | 2003 | 1.01 | | Page 1 of | | 33.437 | | | | Abbreviations, annotations and conventions used in the Mark Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | Question | Expected Answers | S | | Marks | | 1 | (a) Each line represents the transfer of an electron between energy levels The energy levels are quantised (or equiv) (b) (i) The point at which an electron is removed from the atom (or equiv) | | | 1 1 1 | | | (ii)
 | | с
Ш | | | | (1) for sketch, (1) for label
(needs to be the right way round) | | | 2 | | | (c) $\bullet E = \underline{hc} = \underline{6}$ | $\frac{.63 \times 10^{-34} \times 3.00}{557 \times 10^9}$ | x 10 ⁸ | 1 | | | $= 3.57 \times 10^{-19} \text{ J}$ | | | 1 | | | (d) Measuring sodium levels in blood, determining the composition of metal alloys analysing elements present in stars | | | 1 | | ······································ | | | | Total: 8 | | 2 | (a) Partition: thin-layer / paper / gas-liquid / or real e.g. Adsorption: thin-layer / or real e.g. | 1 1 | |---|--|-----| | | (b) Time between the injection of a sample and the appearance of a given peak | 1 | | | (c) Mobile phase: carrier gas Stationary phase: liquid held on solid support | 1 1 | | | (d) Based on their measurements : | 1 | | | Correction of baseline | | | | Correct calculation of peak area | 1 | | | Correct use of total area to give % | 1 | | | Example Area of $A = 1 \times 27.5 = 13.75$ % $A = 13.75 = 46\% + 3$ | | | | Area of $\mathbf{B} = \underline{1 \times 7} = 3.5$ % $\mathbf{B} = \underline{3.5} = 12\% + 3$ | | | | Area of $\mathbf{C} = \frac{2}{1.5 \times 17} = 12.75$ % $\mathbf{C} = \frac{12.75}{43\% + 3} = \frac{2}{12.75}$ | | | | | | | | | | | Mark | Unit Code | Session | Year | Version | |--|--|---------|---------------------|---------| | Scheme | 2815/04 | January | 2003 | 1.01 | | Page 3 of | | | | | | Abbreviations,
annotations and
conventions used
in the Mark
Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | Question | Expected Answer | S | | Marks | | 2 (cont.) | (e) Description: DC source (1), buffered medium (1) with sample placed in the centre (1) Explanation: ionic forms depend on pH (1) Amino and carboxyl ends can be charged (1) When both are charged remains stationary | | 6
1
Total: 15 | | | Mark | Unit Code | Session | Year | Version | |--|--|---------|------|-------------| | Scheme | 2815/04 | January | 2003 | 1.01 | | Page 4 of | | | | | | Abbreviations,
annotations and
conventions used
in the Mark
Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | Question | Expected Answer | S | | Marks | | 3 | (a) Unsaturated / double / ● bonds lone pair / non-bonding electrons | | | 1 1 | | | (b) CH ₃ CH ₂ OH and CH ₃ CHO circled (penalty for each incorrect above two circled) | | | 2 x 1 | | | (c) E has (5) delocalised / conjugated double bonds
Energy levels are closer together
Shifts absorption from uv to visible / longer λ | | | 1
1
1 | | | (d) (i) double bond / • electrons(ii) contains a new chromophore has non-bonding electrons from bromine | | | 1 | | | | | | 1 1 | | | (e) M+1 peaks are due to ¹³ C
M+2 peak in G is due to ⁸¹ Br | | | 1 | | | | | | | | | | | | Total: 12 | | Mark | Unit Code | Session | Year | Version | |--|---|----------|------|----------------------------| | Scheme | 2815/04 | January | 2003 | 1.01 | | Page 5 of | | | | | | Abbreviations, annotations and conventions used in the Mark Scheme | / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument | | | | | Question | Expected Answer | S | | Marks | | 4 | (a) (i) Structure III since 3450 cm⁻¹ peak shows -OH (ii) Triplet is caused by CH₃ adjacent to CH₂ Quartet is caused by CH₂ adjacent to CH₃ (iii) D from D₂O exchanges with the -OH proton Deuterium does not absorb (b) (i) Structure I has no labile protons so no peaks would disappear (could argue the reverse for structure III) (ii) Each possible structure for J would show a different fragmentation pattern The fragmentation pattern produced is characteristic of the structure of the molecule OR examples of unique fragments | | | 1
1
1
1
1
1 | | | | | | Total: 10 |