Subject: ...BIOCHEMISTRY. Code: 2815/02 Session: January.... Year: 2003..... Mark Scheme post exam 16Feb 2003 **MAXIMUM MARK** 45 | 1 | (a) | Active site ✓ | saturated with substrate√ | AW | 2 | |---|-----|---|---------------------------|----|----| | | (b) | Curve is less steep√ and flattens to maximum at lower activity√ | | 2 | | | | | Question total | | | 4 | | | | PAPER TOTAL | | | 45 | | 3 (a) (i) | Any COO group or OPO group ✓ Accept -CH₂OCO- | | 1 | |-----------|--|---|----| | (ii) | Central C on glycerol ✓ and C2 in serine ✓ | | 2 | | (iii | -1 ✓ | | 1 | | (b) | Picture showing bilayer ✓ two hydrocarbon chains each inside ✓ | | 2 | | (c)(i) | Micelle scores one ✓ only
-NH ₃ + ✓ -COO- ✓ | | 2 | | (ii) | lonic attraction \checkmark between charged side-chains on protein and charges on surface of membrane \checkmark / hydrogen bonding \checkmark between suitable groups on protein and surface eg NH and CH $_2$ OH \checkmark | | 2 | | (iii) | Converts ⁺ NH ₃ to NH ₂ /changes ionisation status/charges ✓ (not COOH becomes COO ⁻) Reducing ionic attractions ✓ | | 2 | | | Question | | 12 | | 4 | total | | | | | Look for 8 points from the following . Several can be earned by accurate diagrams. AW throughout. | | | | | glycosidic links ✓ | | | | | In starch links are α 1-4 \checkmark (and α 1-6 in amylopectin \checkmark)
Amylopectin branched \checkmark | | | | | In cellulose links are β 1-4 \checkmark It must be clear that they understand α and β . | | | | | Resulting helical/coils \(\) in amylose Starch allows ready hydrolysis \(\) to glucose, for energy/ATP production \(\) Starch is insoluble (reason not required) \(\) and does not affect the osmotic pressure within a cell. \(\) | | | | | Parallel strands ✓ connected by hydrogen bonds ✓ in cellulose Therefore fibrous ✓ to provide strength ✓ for plant cell walls | | 8 | | | QWC Look for at least two complete sentences with fewer than three SPG errors. | 1 | | | | Question total | | 9 | | 2 (a) | 284 (gmol ⁻¹) | | 1 | |----------|---|---|---| | (b) | Glucose -2800/182 = -15.4kJg $^{-1}$ \checkmark Accept the correct -15.6 kJg $^{-1}$. Stearic acid -11080/284 = -39.0kJg $^{-1}$ ecf \checkmark accept bare answers and two or more sig figs. Must be some evidence of negative signs. | | 2 | | (c) | Energy produced by formation ✓ of O to H and ✓ C to O bonds | | | | | In glucose many of these are formed already ✓ | | 3 | | | OR glucose is more oxidised than stearic acid \checkmark plus further comment on oxidation of CH $_2$ releasing more energy than that of CHOH. \checkmark AW | | J | | | Question total | | 6 | | 5 (a)(i) | D (11 4 T | 4 | | | (ii) | Presence of U not T | 1 | | | | Any two ✓✓ of DNA uses deoxyribose not ribose RNA molecules smaller | | | | | DNA usually double helical | | 2 | | (b) | DNA is found only in nucleus - Phe-Pro-Lys-Gly- ✓✓ (with one mistake or reverse TryLysAlaLeu ✓) | | 2 | | (c) | , . | | | | | 3'-AAGGGCUUUCCA-5' ✓ (3' and 5' not essential) | | 1 | | 6 (a)(i) | Question total | | 6 | | 0 (a)(i) | | | | | | H₂NCH(CH₃)CONHCH(CH₃)COOH ✓ Accept displayed structure and the zwitterion | | 1 | | (ii) | Accept displayed structure and the Ewitterion | | | | | + H ₃ NCH(CH ₃)COOH ✓ | | 1 | | (b) | | | 2 | | (c) (i) | α-helix/chain in coil or spiral ✔ or diagram
β-pleated sheet/flat or zigzag ✔ or diagram | | | | (ii) | bind to/carry ✓oxygen reversibly ✓/allow oxygen to bind ✓ as a ligand ✓ | 2 | | | | Four separate protein subunits ✓ | | | | | One \checkmark from:
Two α and two β units (Use this to find first mark if necessary but then need further point for second mark).
An Fe in each unit | | | | | Precise fitting to form working protein | | 2 | | | Mark Scheme | | _ | | | | | 8 | Ougstion total | (b) (i) | (four) separate protein subunits aggregate to form the working protein | 2 | |---------|--|---------| | (ii) | bind to/carry oxygen reversibly | 1 | | | Question total | 8 | | 6 (a) | Active site becomes saturated with substrate | | | (b) | Curve should be less steep And flatten out well below the original | 2 | | | Question total | 4
45 | | | | | PAPER TOTAL