Downloaded from http://www.thepaperbank.co.uk

OCR

RECOGNISING ACHIEVEMENT

TRENDS + PATTERNS
Mark Scheme 2815/01
January 2003

Question	Expected answers	Marks
1 (a)	Number of outer shell electrons increases (by one) / uses (one) more outer electron in bonding / (maximum) oxidation number increases (by one) (1)	1
(b)	Bonding NaCl and MgCl ₂ – ionic AlCl ₃ and SiCl ₄ – covalent Structure NaCl and MgCl ₂ – giant AlCl ₃ and SiCl ₄ – simple	4
(c)	Sodium chloride has a higher melting point than silicon(IV) chloride / sodium chloride has a high melting point and silicon(IV) chloride a low melting point (1); And Any three from Silicon(IV) chloride has intermolecular forces / van der Waals forces of attraction / induced dipole-induced dipole attractions (1); these forces are weak (1); NaCl has attraction between positive ion and negative ion / NaCl has electrostatic attraction between ions (1); these attractions are strong (1)	4
(d)	Any six from Sodium chloride dissolves in water / NaCl(s) → Na ⁺ (aq) + Cl(aq) / NaCl dissociates in water (1); Gives a colourless solution (1); With a pH of 7 (1); Silicon(IV) chloride is hydrolysed / vigorous reaction (1); Gives a mixture with a pH of between 0 and 6 (1); White precipitate formed / steamy fumes (1); SiCl ₄ + 2H ₂ O → SiO ₂ + 4HCl / SiCl ₄ + 4H ₂ O → Si(OH) ₄ + 4HCl (1)	6
		Total = 15

Question	Expected answers	Marks
2 (a)	$MgCO_3 \rightarrow MgO + CO_2(1)$	1
(b)	Moles of MgCO ₃ = $0.0050 / 0.00498$ (1); So mass of BaCO ₃ = $0.98 / 0.99$ (1)	2
(c)	More (inner) shielding (shells) / more shells (1)	1
(d)	Charge density decreases from Mg ²⁺ to Ba ²⁺ (1); As the rate of decomposition (as shown from the slope of graph) decreases from MgCO ₃ to BaCO ₃ / MgCO ₃ produces more carbon dioxide (1)	2
(e)	Anion is polarised by the positive ion / carbonate is polarised by the cation / electron cloud around carbonate ion is distorted by cation / covalent bonds within the carbonate ion are weakened (1); Polarising ability of cation decreases from Mg ²⁺ to Ba ²⁺ / ora (1);	2
		Total = 8

Question		on	Expected answers	Marks
3	(a)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (1); (Iron is a transition element since this ion has an) incomplete set of 3d electrons / aw (1)	2
	(b)		Iron in the Haber process / Iron to catalyse reaction of nitrogen and hydrogen / iron in the synthesis of ammonia (1)	1
	(c)	(i)	Calculation of moles / mole ratio (1) Na = 1.21, Fe = 0.603 and O = 2.41; Divide by smallest to give correct molar ratio (1) OR Calculation of relative formula mass (1); Working out to get the same percentage compositions (1)	2
		(ii)	+6 (1)	1
	(d)	(i)	$2l^{-} \rightarrow l_2 + 2e^{-}(1)$	1
		(H)	FeO ₄ ²⁻ + 8H ⁺ + 4I ⁻ → Fe ²⁺ + 4H ₂ O + 2I ₂ Correct reactants and products (1); Balancing (1)	2
		(III)	Colour after is orange / yellow / brown (solution) (1)	1
		 		Total = 10

Expected answers	Marks
Any eleven from Bonding and shape Dative / coordinate bonding – this must be stated in words (1); Water is an electron pair donor / ligand is an electron pair donor / lone pair on oxygen (1); Metal ion accepts electron pair (1); Octahedral / drawing of octahedral complex (1)	12
Water In both cases central oxygen is surrounded by four electron pairs (1); In gaseous water (2 bond pairs and) 2 lone-pairs (1); In gaseous water lone pair-lone pair repulsion is greater than other electron pair repulsions (1); Bond angle is 104° – 105° (1); In complex one dative bond is more like a bond pair / water has only one lone pair (1); So less repulsion from the lone pairs (1); bond angle in complex is 106° – 108° / bond angle is slightly bigger than 104° (1)	
Distinguishing Reagent (1) e.g. aqueous sodium hydroxide / add aqueous ammonium thiocyanate / aqueous ammonia; Result of test with Fe ²⁺ (1) e.g. green ppt with Fe ²⁺ and NH ₃ or NaOH and no reaction with SCN ⁻ ; Result with Fe ³⁺ (1) e.g. orange ppt with Fe ³⁺ and NH ₃ or NaOH and blood red with SCN-; Suitable equations (2) e.g. Fe ²⁺ (aq) + 2OH ⁻ (aq) → Fe(OH) ₂ (s) or [Fe(H ₂ O) ₆] ³⁺ + SCN ⁻ → [Fe(SCN)(H ₂ O) ₅] ²⁺ + H ₂ O And	
QWC – award one mark for answers using the correct scientific terminology (1)	Total = 12
	Any eleven from Bonding and shape Dative / coordinate bonding — this must be stated in words (1); Water is an electron pair donor / ligand is an electron pair donor / lone pair on oxygen (1); Metal ion accepts electron pair (1); Octahedral / drawing of octahedral complex (1) Water In both cases central oxygen is surrounded by four electron pairs (1); In gaseous water (2 bond pairs and) 2 lone-pairs (1); In gaseous water lone pair-lone pair repulsion is greater than other electron pair repulsions (1); Bond angle is 104° − 105° (1); In complex one dative bond is more like a bond pair / water has only one lone pair (1); So less repulsion from the lone pairs (1); bond angle in complex is 106° − 108° / bond angle is slightly bigger than 104° (1) Distinguishing Reagent (1) e.g. aqueous sodium hydroxide / add aqueous ammonium thiocyanate / aqueous ammonia; Result of test with Fe²* (1) e.g. green ppt with Fe²* and NH₃ or NaOH and blood red with SCN: Result with Fe³* (1) e.g. orange ppt with Fe³* and NH₃ or NaOH and blood red with SCN-; Suitable equations (2) e.g. Fe²*(aq) + 2OH*(aq) → Fe(OH)₂(s) or [Fe(H₂O)₀]³* + SCN* → [Fe(SCN)(H₂O)₃]²* + H₂O And QWC – award one mark for answers using the correct

Downloaded from http://www.thepaperbank.co.uk