Downloaded from http://www.thepaperbank.co.uk OCR RECOGNISING ACHIEVEMENT TRENDS + PATTERNS Mark Scheme 2815/01 January 2003 | Question | Expected answers | Marks | |----------|---|------------| | 1 (a) | Number of outer shell electrons increases (by one) / uses (one) more outer electron in bonding / (maximum) oxidation number increases (by one) (1) | 1 | | (b) | Bonding NaCl and MgCl ₂ – ionic AlCl ₃ and SiCl ₄ – covalent Structure NaCl and MgCl ₂ – giant AlCl ₃ and SiCl ₄ – simple | 4 | | (c) | Sodium chloride has a higher melting point than silicon(IV) chloride / sodium chloride has a high melting point and silicon(IV) chloride a low melting point (1); And Any three from Silicon(IV) chloride has intermolecular forces / van der Waals forces of attraction / induced dipole-induced dipole attractions (1); these forces are weak (1); NaCl has attraction between positive ion and negative ion / NaCl has electrostatic attraction between ions (1); these attractions are strong (1) | 4 | | (d) | Any six from Sodium chloride dissolves in water / NaCl(s) → Na ⁺ (aq) + Cl(aq) / NaCl dissociates in water (1); Gives a colourless solution (1); With a pH of 7 (1); Silicon(IV) chloride is hydrolysed / vigorous reaction (1); Gives a mixture with a pH of between 0 and 6 (1); White precipitate formed / steamy fumes (1); SiCl ₄ + 2H ₂ O → SiO ₂ + 4HCl / SiCl ₄ + 4H ₂ O → Si(OH) ₄ + 4HCl (1) | 6 | | | | Total = 15 | | Question | Expected answers | Marks | |----------|---|-----------| | 2 (a) | $MgCO_3 \rightarrow MgO + CO_2(1)$ | 1 | | (b) | Moles of MgCO ₃ = $0.0050 / 0.00498$ (1);
So mass of BaCO ₃ = $0.98 / 0.99$ (1) | 2 | | (c) | More (inner) shielding (shells) / more shells (1) | 1 | | (d) | Charge density decreases from Mg ²⁺ to Ba ²⁺ (1);
As the rate of decomposition (as shown from the slope of graph) decreases from MgCO ₃ to BaCO ₃ / MgCO ₃ produces more carbon dioxide (1) | 2 | | (e) | Anion is polarised by the positive ion / carbonate is polarised by the cation / electron cloud around carbonate ion is distorted by cation / covalent bonds within the carbonate ion are weakened (1); Polarising ability of cation decreases from Mg ²⁺ to Ba ²⁺ / ora (1); | 2 | | | | Total = 8 | | Question | | on | Expected answers | Marks | |----------|-----|--------------|--|------------| | 3 | (a) | | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ (1);
(Iron is a transition element since this ion has an)
incomplete set of 3d electrons / aw (1) | 2 | | | (b) | | Iron in the Haber process / Iron to catalyse reaction of nitrogen and hydrogen / iron in the synthesis of ammonia (1) | 1 | | | (c) | (i) | Calculation of moles / mole ratio (1) Na = 1.21, Fe = 0.603 and O = 2.41; Divide by smallest to give correct molar ratio (1) OR Calculation of relative formula mass (1); Working out to get the same percentage compositions (1) | 2 | | | | (ii) | +6 (1) | 1 | | | (d) | (i) | $2l^{-} \rightarrow l_2 + 2e^{-}(1)$ | 1 | | | | (H) | FeO ₄ ²⁻ + 8H ⁺ + 4I ⁻ → Fe ²⁺ + 4H ₂ O + 2I ₂
Correct reactants and products (1);
Balancing (1) | 2 | | | | (III) | Colour after is orange / yellow / brown (solution) (1) | 1 | | | | | | Total = 10 | | Expected answers | Marks | |--|--| | Any eleven from Bonding and shape Dative / coordinate bonding – this must be stated in words (1); Water is an electron pair donor / ligand is an electron pair donor / lone pair on oxygen (1); Metal ion accepts electron pair (1); Octahedral / drawing of octahedral complex (1) | 12 | | Water In both cases central oxygen is surrounded by four electron pairs (1); In gaseous water (2 bond pairs and) 2 lone-pairs (1); In gaseous water lone pair-lone pair repulsion is greater than other electron pair repulsions (1); Bond angle is 104° – 105° (1); In complex one dative bond is more like a bond pair / water has only one lone pair (1); So less repulsion from the lone pairs (1); bond angle in complex is 106° – 108° / bond angle is slightly bigger than 104° (1) | | | Distinguishing Reagent (1) e.g. aqueous sodium hydroxide / add aqueous ammonium thiocyanate / aqueous ammonia; Result of test with Fe ²⁺ (1) e.g. green ppt with Fe ²⁺ and NH ₃ or NaOH and no reaction with SCN ⁻ ; Result with Fe ³⁺ (1) e.g. orange ppt with Fe ³⁺ and NH ₃ or NaOH and blood red with SCN-; Suitable equations (2) e.g. Fe ²⁺ (aq) + 2OH ⁻ (aq) → Fe(OH) ₂ (s) or [Fe(H ₂ O) ₆] ³⁺ + SCN ⁻ → [Fe(SCN)(H ₂ O) ₅] ²⁺ + H ₂ O And | | | QWC – award one mark for answers using the correct scientific terminology (1) | Total = 12 | | | Any eleven from Bonding and shape Dative / coordinate bonding — this must be stated in words (1); Water is an electron pair donor / ligand is an electron pair donor / lone pair on oxygen (1); Metal ion accepts electron pair (1); Octahedral / drawing of octahedral complex (1) Water In both cases central oxygen is surrounded by four electron pairs (1); In gaseous water (2 bond pairs and) 2 lone-pairs (1); In gaseous water lone pair-lone pair repulsion is greater than other electron pair repulsions (1); Bond angle is 104° − 105° (1); In complex one dative bond is more like a bond pair / water has only one lone pair (1); So less repulsion from the lone pairs (1); bond angle in complex is 106° − 108° / bond angle is slightly bigger than 104° (1) Distinguishing Reagent (1) e.g. aqueous sodium hydroxide / add aqueous ammonium thiocyanate / aqueous ammonia; Result of test with Fe²* (1) e.g. green ppt with Fe²* and NH₃ or NaOH and blood red with SCN: Result with Fe³* (1) e.g. orange ppt with Fe³* and NH₃ or NaOH and blood red with SCN-; Suitable equations (2) e.g. Fe²*(aq) + 2OH*(aq) → Fe(OH)₂(s) or [Fe(H₂O)₀]³* + SCN* → [Fe(SCN)(H₂O)₃]²* + H₂O And QWC – award one mark for answers using the correct | Downloaded from http://www.thepaperbank.co.uk