Downloaded from http://www.thepaperbank.co.uk

RECOGNISING ACHIEVEMENT

CHAWS, RINGS +
SPECTROSCOPY
Mark Scheme 2814
January 2003

Marking structures in organic chemistry

When a structure is asked for, there must be sufficient detail using conventional carbon skeleton and functional group formulae (e.g. CH_3 , C_2H_5 , OH, COOH, $COOCH_3$) to unambiguously define the arrangement of the atoms. (E.g. C_3H_7 would not be sufficient).

If not specified by the question, this may be given as either:

- a structural formula e.g. CH₃CH(OH)C₂H₅,
- a skeletal formula e.g.

• a displayed formula - e.g

or as a hybrid of these - e.g.

The following errors should be penalised – although each one only loses a maximum of one mark on the paper:

- clearly connecting a functional group by the wrong atom
- showing only 'sticks' instead of hydrogen atoms –

Benzene rings may be represented as as well as in any of the types of formula above.

¹ Note that in organic chemistry a candidate may identify a compound by name and formula. If one of these is wrong then the mark is not awarded as this is a contradictory answer.

1 (a) (i)

[1]

(ii) $C_6H_6 + CH_3CI \longrightarrow C_6H_5CH_3 + HCI \checkmark$

[1]

(iii) iron / aluminium chloride / iron(III)chloride etc Fe / AICI₃/ FeCl₃ 🗸

[1]

(iv) any polymethylated benzene ring 🗸

name eg 1,2-dimethylbenzene/ 1,4-dimethylbenzene

[2]

(b) (i)

brominated phenol ✓ 2,4,6 substituted ✓ balancing ✓

[3]

(ii)

phenoxide ✓ balancing <

[2]

[1]

- any general use that contains phenois eg (c)
 - antiseptics / disinfectants /dyes / plastics /pharmaceuticals / pesticides/explosives 🛩

[Total: 11]

2814	Downloaded from http://www.wowtethepaperbank.co.uk Januar	y 2003
2 (a) (i)	(trigonal) pyramidal ✓	[1]
(ii)	tetrahedral ✓	[1]
(iii)	trigonal (planar) ✓	[1]
(b) (i)	H₃N ⁺ CH₂COOH ✓	[1]
(ii)	NH₂CH₂COO ⁻ ✓	[1]
(c) (i)	H ⁺ / acid / HCl / H₂SO₄ / OH ⁻ / alkali ✓ /heat / reflux ✓	
	(or use of an enzyme at 37°ish)	.
(ii)	hydrolysis ✓	[2]
(d) (i)	<u>carbon</u> with four different / distinguishable groups attached ✓	
	(or carbon / part of the molecule / atom which is assymetric / non-superimposible on its mirror image)	[1]
(ii)	NH ₂ CH ₃ COOH HOOC CH ₃ one structure of alanine with at least one 3-d bond ✓	
(111)	two optical isomers / reflections of a 3-d structure ✓	[2]
(iii)	one stereoisomer ✓ natural /from a living system / made by enzymes etc ✓	[2]

[Total: 13]

4 (a) (i) reagents conc H₂SO4 + HNO3 ✓

electrophile
$$NO_2^+\checkmark$$

 H_2SO_4 + HNO_3 \longrightarrow HSO_4^- + H_2O + $NO_2^+/$
 $2H_2SO_4$ + HNO_3 \longrightarrow $2HSO_4^-$ + H_3O^+ + $NO_2^+\checkmark$

mechanism

curly arrow from benzene π -bond to electrophile \checkmark correct intermediate (ecf on electrophile formula) ✓ curly arrow from C-H bond to π-bond and H ⁺ formed ✓

$$C_6H_6 + HNO_3 \longrightarrow C_6H_5NO_2 + H_2O \checkmark$$

ANY 6 out of 7 [6]

(ii) NO₂ taccepts an electron pair ✓ H is replaced / substituted by NO₂ ✓ [2]

two peaks ✓ (b) peak at/between 2.3-2.7 ✓ peak at/between 7.1-7.7 ✓

[3]

[Total: 11]

2814

5 (a)

any unambiguous type of formula 🗸 🗸 🗸

[4]

(b) (i) butan-1-ol gives butanal /butanoic acid / an aldehyde / a carboxylic acid butan-2-ol gives butanone / a ketone 2-methylpropan-2-ol gives no reaction ✓✓✓

3 marks for the alcohol reactions

D is methylpropan-1-ol ✓ E is methylpropanoic acid ✓ ✓ (where any carboxylic acid for E gets the first mark)

> 3 marks for identifying D and E Any 5 out of 6

Quality of Written Communication

information is organised clearly and coherently using at least two specialist terms not mentioned in the question (eg correct names of compounds, primary, secondary, aldehyde, ketone, oxidised etc.) ✓

[6]

(ii)
$$(CH_3)_2CHCOOH + C_2H_5OH \longrightarrow (CH_3)_2CHCOOC_2H_5 + H_2O$$

 $/C_4H_8O_2 + C_2H_8O \longrightarrow C_6H_{12}O_2 + H_2O$
/ ecf from (i) \checkmark [1]

но--¢--¢-

where:

-OH ✓ -COO⁻ / COO ⁻ Na⁺ / COONa ✓

2]

[Total: 13]

6 (a) (i) nucleophilic addition <

CN ⁻ ✓

both curly arrows / arrow from nucleophile and dipole ✓

both curly arrows ✓

intermediate ✓

ANY 4 out of 6 [4]

... and X 🗸

(ii) HCI / H₂SO₄ / H⁺ / acid ✓ hydrolysis ✓

[2]

[1]

(b) 1 doublet and 1 quadruplet / 1:3:3:1 and 1:1 ✓ correct reason for at least one peak ✓ (eg 1;3:3;1 due to 3 neighbours / next to CH₃ / use of n+1 rule)

[2]

[1]

[1]

(iii)

[2]

[Total: 13]

7 (a)

M:

L:

[3]

(**b**)

at least one correct ester link ✓ rest of the structure and repeat also correct ✓

[2]

(c) condensation ✓ loss of water / small molecule ✓

[2]

(d) fibres / clothing / bottles etc ✓

[1]

[Total: 8]

8 to detect the presence of C=O ...

2,4-dinitrophenylhydrazine / 2,4-DNPH ✓ red/orange/yellow ppt/solid/crystals ✓

or

i.r. spectrum ✓ has peak at 1680-1750 cm⁻¹ ✓

2 marks

to confirm it is a ketone not an aldehyde ...

Tollens' reagent /(acidified) K₂Cr₂O₇ ✓ aldehyde: silver mirror / green colour ✓ ketone: no silver mirror / no green colour ✓

ОГ

n.m.r. spectrum ✓

aldehyde: peak at 9.5-10 ✓ ketone: no peak at 9.5-10 ✓

3 marks

a chemical method to identify the ketone ...

use the product / solid / ppt from 2,4-DNPH / 2,4-dinitrophenylhydrazine
(re)crystallise / purify (the product)
measure the melting point
compare with known compounds / data book

4 marks

ANY 8 marks out of 9 [8]

Quality of Written Communication

at least two sentences with legible text, accurate spelling, grammar and punctuation, so the meaning is clear ✓

[1]

[Total: 9]