Downloaded from http://www.thepaperbank.co.uk

OCR

RECOGNISING ACHIEVEMENT

CHAINS + RINGS
Mark Scheme 2812
January 2003

Downloaded from http://www.thepaperbank.co.uk

1.

- (a)(i) B ✓ [1]
- (ii) C **√** [1]
- (iii) B **✓** [1]
- (iv) A ✓ [1] and C ✓ [1]
- (b) equation $C_4H_9Br + NH_3 \rightarrow C_4H_9NH_2 + HBr (or C_4H_9NH_3^+Br^-)$ [1]

name: 1-aminobutane/(n-)butylamine/butan-1-amine ✓ [1]

- (ii)

 If diagram shows a total of 8 electrons

 ✓[1]

 and has a negative charge.
 only award if the diagram shows 8 electrons
- (iii) unambiguous identification of organic product:

2-methylpropan-1-ol,

(CH₃)₂CHCH₂OH ✓ [1]

[Total: 12]

2. (a)(i) same molecular formula -different structure same formula -different structure only scores 1 mark

√ √ [2]

(ii)

H H Br H-C-C=C-Br H	H Br H H-C-C=C-Br H	H H H Br-C-C-C-Br H	H Br H I I I Br-C-C=C-H H	Br H H I I I Br-C-C=C-H I H
1	2	3	4	5

√[1]

√[1]

√[1]

(iii) 1,1-dibromopropene

√ [1]

(b)

(i)

H₃C H

C=C

Br Br

cis

H₃C Br C=C ✓[1] Br H trans

(ii) bond angle = $120^{\circ} \pm 4^{\circ}$

√ [1]

(iii) Each C in the C=C is **not** bonded to two different atoms/groups/ or equivalent.

√ [1]

(iv) Must be 1,3-dibromopropene.

√ [1]

[Total : 11]

2812	Downloaded from http://www.thepaperbank.co.uk				January 2003	
3. (a)						
(i)	Н			✓	[1]	
(ii)	G			✓	[1]	
(iii)	van	✓	[1]			
(b) . (i)	conta	1	[1]			
(ii)	Br ₂ -	→ 2 Br•		✓	[1]	
(iii)	Hom	✓	[1]			
(iv)	$Br \bullet + C_5H_{12} \rightarrow \bullet C_5H_{11} + HBr$				[1]	
	•C ₅ H	$I_{11} + Br_2 \rightarrow C_5H_{11}Br + B$	ir•	✓	[1]	
(c)	1	isomer G ,	1	✓	[1]	
	II	isomer H,	3	✓	[1]	
	111	isomer I,	4	✓	[1]	

[Total : 11]

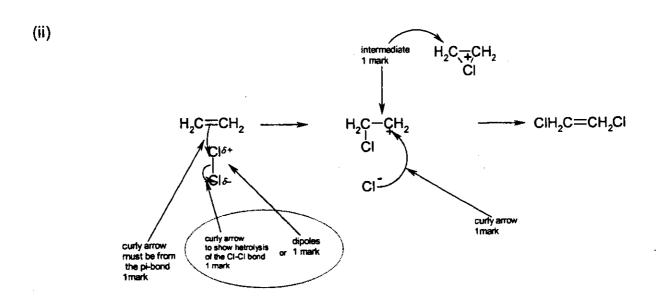
2812 Mark Scheme January 2003

4. (a)

- (ii) alcohol/ OH/ hydroxy(*l*) ✓ [1] secondary

1 mark is available for the ester group showing CH₃ bonded via COO to a ring

2 marks for structure as shown 🗸 🗸 [2]


[Total : 7]

5. (a) (i) electrophilic

[1]

addition

[1]

4 marking points:

curly arrow from double bond to Cl₂,

curly arrow showing movement of electrons in the CI-CI bond or the

dipole in the CI-CI,

Intermediate carbocation/carbonium ion,

Curly arrow from Cl⁻ to intermediate.

√√√ [4]

(ii) general problems:

non-biodegradable/ not broken down by bacteria/ do not decompose
✓ [1]
when burnt toxic furnes are produced
✓ [1]
specific problem of PVC:

(iii) removal of toxic products or HCl formed during combustion by gas scrubbers/ by dissolving in a spray of alkali/ recycling/feedstock recycling/use energy from combustion for domestic heating/ manufacture biodegradable polymers .

[1]

[Total : 10]

6. 3 marks for equations,

2 marks for correctly explaining (in words) each of the 3 processes.

1 mark for correctly explaining (in words) 2 of the processes.

Cracking. equation for long chain alkane into shorter chain alkane + alkene. ✓ [1]

Isomerisation

equation for straight chain alkane converted into a branched chain alkane

• [1]

equation could be in the form of:

Reforming

to show straight chain into ring (& must be balanced with appropriate number of H_2 .) \checkmark [1]

(All three processes require) the use of heat and/or a catalyst

(Allow once)

Importance of the products:

max of 3 marks.

√√√ [3]

- more volatile/lower boiling points
- used in fuels because they burn better/smoother/more efficiently/more efficient fuel
- additive to petrol
- reduce knocking/pinking/increase octane number or rating
- alkenes can form polymers/PVC (see Q5)/alcohols etc

1 mark for quality of written communication to be awarded for clear presentation and SPAG.

[Total:8]

[1]