

AS
FOUNDATION CHEMISTRY
Mark Scheme 2811
January 2004

Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2811 January 200

Question		Expected Answers 79Br has two ✓ less neutrons than 81Br ✓	Marks
1 (a)	(i)	⁷⁹ Br has two ✓ less neutrons than ⁸¹ Br ✓	[2]
	(ii)	⁷⁹ Br and ⁸¹ Br have same number of protons ✓ and same number of electrons ✓	[2]
(b)	(i)	1s²2s²2p ⁶ 3s²3p ⁶ 3d¹04s²4p ⁵ √√ Award 1 mark for p ⁵ .	[2]
	(ii)	Highest energy sub-shell/sub-shell/ being filled is the p sub-shell/outer electrons are in a p (sub-shell/orbital/shell) ✓	[1]
(c)	(i)	Number AND type of atoms (making up a molecule)/number of atoms of each element ✓ Not ratio	[1]
	(ii)	$P_4 + 6 Br_2 \longrightarrow 4 PBr_3 \checkmark$	[1]
	(iii)	ratio P: Br = 16.2/31 : 83.8/79.9 /= 0.52 : 1.05 /= 1 : 2 Empirical formula = PBr ₂ Correct compound = P ₂ Br ₄ /phosphorus(II) bromide but not PBr ₂	[3]
			Total: 12

Final Mark Scheme

January 2004

Question	Expected Answers	
(a)	shared pair \checkmark of electrons \checkmark i.e. 'shared electrons' is worth 1 mark. pair of electrons for second marks	[2]
(b)	H _z O: all correct including lone pairs around O ✓	
	CO₂: correct covalent bonds around carbon ✓ lone pairs added around oxygen atoms ✓ (must be 'dot AND cross' or electron source clearly shown (different coloured for source is OK)	[3]
(c) (i)	molecule shown as non-linear 🗸	
	angle: 104 - 105° ✓	
	molecule shown as linear ✓	[4]
(ii)	angle: 180° ✓	
	shape of H₂O shape of CO₂	
	Electron pairs repel / groups (or regions) of electrons repel/ electron pairs get as far apart as possible 🗸	[2]
	Oxygen in water surrounded by 4 areas of electron density/2 bonds and 2 lone pairs	
	AND Carbon in CO₂ surrounded by 2 regions of electron density/2 double bonds ✓	
(d) (i)	Attraction of electrons \checkmark in a bond \checkmark towards an atom	[2]
(ii)	CO_2 is symmetrical/ H_2O is not symmetrical \checkmark In CO_2 , dipoles cancel/in H_2O , the dipoles don't cancel \checkmark	[2]
		Total:

E:1	Mark	Saha	
rınaı	mark	SCHE	:me

Question	Expected Answers	Marks
3 (a)	Energy change when each atom in 1 mole 🗸	
	of gaseous atoms 🗸	[3]
	loses an electron ✓ (to form 1 mole of gaseous 1+ ions).	
(b)	increasing nuclear charge/number of protons 🗸	
	electrons experience greater attraction or pull / atomic radius decreases / electrons added to same shell /same or similar shielding 🗸	[2]
(c)	N has an single electron in each p orbital/ O has a paired p orbital /	
	in O, this pairing leads to repulsion/higher energy level ✓	[2]
(d)	(From 2 → 10 → 18 / down group)	
	1st ionisation energies decrease/easier to remove electrons	
	electron is further from nucleus/ atomic radius increases/ electron in a different shell/ atoms increase in size (not sub-shell or orbital)	
	electron experiences more shielding \checkmark (more is essential here)	
	distance and shielding outweigh the increased nuclear charge 🗸	[4]
	NOT: attraction/pull; effective nuclear charge	
		Total: 11

Question		Expected Answers	Marks	
4 (a)		Strontium reacts with oxygen/strontium oxide forms/SrO forms \checkmark 2Sr + O ₂ \longrightarrow 2SrO / Sr + $^{1}/_{2}$ O ₂ \longrightarrow 5rO \checkmark	[2]	
(b)	(i)	In Sr, oxidation number = 0 √ In Sr(OH) ₂ , oxidation number = (+)2 √ OR Oxidation number increases from Sr → Sr(OH) ₂ √ by 2 √	[2]	
	(ii)	$0.438/87.6 = 5.00 \times 10^{-3} / 0.00500 \text{ mol } \checkmark$	[1]	
	(iii)	0.00500 × 24.0 = 0.120 dm³ √ (accept 120 cm³)	[1]	
	(iv)	0.00500 × 1000/200 = 0.0250 mol dm ⁻³ ✓	[1]	
(c)	(i)	heat 🗸	[1]	
	(ii)	3SrO(s) +2Al(s) \longrightarrow 3Sr(s) +Al ₂ O ₃ (s) \checkmark	[1]	
	(iii)	Molar mass of SrCO₃ = 87.6 + 12 + 16x3 = 147.6 g mol ⁻¹ ✓		
		Mass SrCO₃ required = 100 x 147.6/87.6 = 168 tonnes ✓	·	
		Mass of ore needed = mass $SrCO_3 \times 100/2$ = $168 \times 100/2 = 8400$ tonnes / 8425 tonnes (from 168.484931507) \checkmark		
		(answer depends on rounding) 5000 tonnes is 50 x 100 tonnes: worth 1 mark	[3]	
	(iv)	98% waste produced which must be disposing of /made into something worthwhile / CO₂ being removed by something sensible/ any sensible comment √	[1]	
			Total: 14	

Question	Expected Answers	Marks
5	Physical states of halogens	
	chlorine gas; bromine liquid; iodine solid/	,
	boiling point increases from $Cl_2 \longrightarrow Br_2 \longrightarrow I_2 \checkmark$	
	number of electrons/number of shells increases down	
	group ✓	,
	van der Waals' forces/ induced dipole-dipole interactions/	
	AW✓	
	stronger forces to be broken (between the molecules) 🗸	[4]
	Displacement	
	with chloride, nothing happens 🗸	
	with iodide, \longrightarrow darker orange/brown/darker yellow	
	/ → purple with organic solvent ✓	
	$Br_2 + 2I^- \longrightarrow I_2 + 2Br^- \checkmark$	
	(or a full equation, e.g. with NaI)	
	The strength of oxidising power is $Cl_2 > Br_2 > I_2$	
	Reactivity order is Cl₂ > Br₂ > I₂ ✓	[4]
	Quality of written communication	
	 organise relevant information clearly and 	
	coherently, using specialist vocabulary when	
	appropriate;	
	Evidence should link together two of the marking points:	
	e.g. size of the intermolecular forces linked to	
	temperature at which a substance changes state /	
	number of electrons linked to magnitude of intermolecular	
	forces /amount of energy needed to overcome forces	
	order of reactivity linked to observation ✓	
		[1]
	The key is a 'because' or 'therefore': i.e bromine doesn't	
	displace chlorine because it is less reactive.	
	Greater intermolecular forces: therefore more energy	,
	needed to break them.	Total: 9
		i Utal. 3