

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY 2811

Foundation Chemistry

Wednesday

4 JUNE 2003

Morning

1 hour

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre N	Number	Candi Numl	

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	11	
2	11	
3	15	
4	12	
5	11	
TOTAL	60	

2

Answer all the questions.

1

For
Examiner
Use

This	s que	stion is about two elements, A and B , in the Periodic Table.	
(a)	Eac	h atom of element A has 15 electrons.	
	(i)	Identify element A.	
			[1]
	(ii)	Complete the electronic configuration of an atom of A.	
		1s ²	[1]
	(iii)	Predict the charge on an ion of A and complete its electronic configuration.	
		charge on ion	•••••
		electronic configuration of ion of A 1s ²	[2]
(b)	Elei	ment B exists as a mixture of three isotopes.	
	(i)	What is the difference between the atomic structures of isotopes?	
			[1]
	(ii)	The atoms of element B have eight electrons in the 3d sub-shell.	
		Identify element B.	
			[1]

(c) A sample of element **B** was analysed in a mass spectrometer. The relative atomic mass of element **B** can be calculated from the results shown in Table 1.1 below.

Table 1.1

	isotope 1	isotope 2	isotope 3
relative isotopic mass	58.0	60.0	62.0
percentage composition/%	68.2	27.3	4.5

(i)	Explain what is meant by the relative atomic mass of element B .
	[3]
(ii)	Using the information in Table 1.1, calculate the relative atomic mass of this sample of B . Give your answer to three significant figures.

[2]

[Total: 11]

4

For Examiner's

2	The halogens chlorine, bromine and iodine each exist as diatomic molecules at room
	temperature and pressure.

(a) Draw a 'dot-and-cross' diagram of a bromine molecule, showing outer electrons only.

[1]

(b) The boiling points of the halogens chlorine to iodine are shown below.

halogen	boiling point/°C
chlorine	-35
bromine	59
iodine	184

[3

5

Examiner's Use

(c)	Who	en chlorine, $\operatorname{C}l_2$, is added to aqueous sodium bromide, NaBr , a reaction takes se.
	(i)	State what you would see in this reaction.
	(ii)	Write an equation for this reaction.
	(iii)	What happens to electrons during this reaction?
		[2]
	(iv)	Why does no reaction take place when bromine is added to aqueous sodium chloride?
		[1]
	(v)	Describe a simple test to confirm the presence of iodide ions in aqueous sodium iodide.
		[2] [Total: 11]

6

For Examiner's Use

3	Calcium oxide, CaO, is used for making cement which is widely used in the construction industry. Calcium oxide can be prepared as 'quicklime' by heating limestone in a lime kiln to
	about 550 °C. The calcium carbonate in the limestone decomposes into calcium oxide and
	carbon dioxide.

carb	oon dioxide.
	$CaCO_3 \longrightarrow CaO + CO_2$
(a)	Draw a 'dot-and-cross' diagram of calcium oxide, showing outer electrons only.
	[2]
(b)	In CaCO ₃ , what is the oxidation state of
	(i) Ca,
	[1]
	(ii) C?
	[1]
(c)	Calculate the mass of CaO that could be made from limestone containing 20 tonnes of CaCO ₃ .
	molar masses: CaCO ₃ , 100 g mol ⁻¹ ; CaO, 56 g mol ⁻¹ .
	1 tonne = 10^6 g.
	[2]
(d)	When water is added to quicklime, a vigorous reaction takes place forming slaked lime, $Ca(OH)_2$.
	Write an equation for the formation of slaked lime in this reaction.
	[1]

Use

	7
(e)	Farmers often add 'lime' to acid soils. The lime is mostly present as slaked lime.
	A chemist neutralised 25.0 cm ³ 0.200 mol dm ⁻³ HCl with slaked lime.
	${\rm Ca(OH)_2(s)\ +\ 2HC} l({\rm aq})\ \longrightarrow\ {\rm CaC} l_2({\rm aq})\ +\ 2{\rm H_2O(l)}$ (i) What is the molar mass of {\rm Ca(OH)_2}?
	(ii) How many moles of HCl were neutralised?
	(iii) Calculate the mass of Ca(OH) ₂ that neutralises this HC <i>l</i> .
	[2] (iv) The chemist neutralised the same amount of HCl with NaOH. Explain why the chemist would need to use more moles of NaOH than Ca(OH) ₂ .
f)	A clear solution of slaked lime in water was made by dissolving Ca(OH) ₂ in an excess of water. When this solution was left exposed to the air, the solution slowly became

milky as a fine white precipitate formed.

Suggest why this happened.

[Total: 15]

8

For Examiner's Use

4	Chemicals	show	а	range	of	different	structures.	The	table	below	shows	four	types	of
	structure.													

structure	example
giant metallic	
giant ionic	
giant molecular	
simple molecular	

			gi	ant ionic	;					-			
			gian	t molecu	lar								
			simpl	e molec	ular								
(a)			ne table t ne second			ample	of ead	ch typ	e of s	tructur	e. Wri	ite its ı	name or
													[4]
(b)	A gi	ant meta	allic struc	ture has	metalli	c bonc	ling.						
	(i)	Draw a	labelled	diagram	to shov	v meta	ıllic bo	nding					
													[2]
	(ii)	How do	oes a sub	stance v	with a gi	ant me	etallic	struct	ure co	nduct	electri	icity?	
			***********					•••••		•••••			

How does a substance with a giant metallic structure conduct electricity?	
I	H

9

but	For Examiner Use
	'
[2]	
oint	

(c)	Explain why a substance with a giant ionic lattice conducts electricity when molten but not when solid.
	[2]
(d)	Explain why a substance with a giant molecular structure has a higher boiling point than a substance with a simple molecular structure.
	[3]
	(Total: 12)

5

10

For Examiner's Use

Explain how you can answer, you should ch	predict the shapes of, and bond angles in, simple molecules. In you noose examples of four different molecular shapes.
.,	
······································	
	[10
	Quality of Written Communication [1

BLANK PAGE

11

Downloaded from	http://www.thepaperbank.co.uk
	12

OCR has made every effort to trace the copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.