Downloaded from http://www.thepaperbank.co.uk

UNIFYING CONCEPTS IN

CHEMISTRY

Mark Scheme 2816/01 June 2002 Downloaded from http://www.thepaperbank.co.uk

1. (a)(i)
$$K_c = \frac{[NO_2(g)]^2}{[N_2O_4(g)]}$$

[1]

(ii)
$$K_c = \frac{(0.0150)^2}{(0.0390)} = 5.77 \times 10^{-3} \checkmark \text{ mol dm}^{-3} \checkmark \text{ accept } 5.76923 \text{ to } 5.8 \times 10^{-3}$$

If (i) is upside down: $\frac{[\text{N}_2\text{O}_4(g)]}{[\text{N}_2\text{O}_2(g)]^2}$, then ans = 173 \checkmark dm³ mol⁻¹ \checkmark accept 173.33333.....to 170

if no square in (i): $\frac{[\text{N}_2\text{O}_4(g)]}{[\text{N}_2\text{O}_4(g)]}$, then ans = 0.384615... \checkmark no units \checkmark (must be stated)

if no square in (i) and inverse: $\frac{[\text{NzO4(g)}]}{[\text{NOz(g)}]}$, 2.6 \checkmark no units \checkmark (must be stated)

(b)
$$\Delta H = (2 \times 33)^{-}(9)^{\checkmark} = (+)57 \text{ kJ mol}^{-1} \checkmark$$

common errors: $-57 \checkmark \times +24 \checkmark \times +75 \checkmark \times -24 \times \times$
[2]

(c) change more NO₂ / less N₂O₄ ✓
explanation equilibrium position → right or forwards / K₀ increases ✓
reaction is endothermic ✓

THIS ANSWER IS CONSEQUENTIAL ON SIGN OF THE ANSWER TO (i)

BUT, a candidate interpreting a '+' enthalpy change as 'exothermic' (or vice versa) will lose the 3rd mark but the 2 'logic marks' before are still consequentially available.

(d) 1 mol N₂O₄ reacts with 2 mol NaOH ✓
amount of NaOH required = 0.00930 mol ✓
volume NaOH = 1000 x 0.0093/0.300 = 31.0 cm³ / 0.0310 dm³ ✓
Common errors
3.1 x 10³ (where x is incorrect) ✓ ✓ ×

15.5 cm³ / 0.0155 dm³
$$\checkmark$$
 × 1.55 x 10^x (where x is incorrect) \checkmark ×× 62 cm³ / 0.062 dm³ \checkmark × 6.2 x 10^x (where x is incorrect) \checkmark ×× [3]

[Total: 11]

[3]

- 2. (a) $k = \frac{\text{rate}}{[\text{H}_2(g)][\text{NO}(g)]^2}$ $k = 8.3 \times 10^4 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1} \text{ calculator value: } 8.333333... \times 10^4$ If [NO] is not squared: $\frac{\text{rate}}{[\text{H}_2(g)][\text{NO}(g)]} \times$, ans = 250 \checkmark units: dm³ mol $^{-1}$ s $^{-1}$ \checkmark If the expression is upside down: $\frac{[\text{H}_2(g)][\text{NO}(g)]^2}{\text{rate}} \times$, ans = 1.2 $\times 10^{-5}$ \checkmark units: mol 2 s dm $^{-6}$ \checkmark upside down and not squared: $\frac{[\text{H}_2(g)][\text{NO}(g)]}{\text{rate}} \times \times$, ans = 0.004 mol s dm $^{-3}$ \checkmark [3]
 - (b)(i) effect on rate x 2 ✓

 reason 1st order wrt H₂(g) ✓

 [2]
 - (ii) effect on rate x 1/4 ✓

 reason 2nd order wrt NO(g) ✓

 [2]

(iii) effect on rate x 27 ✓ [1]

(c)(i) slowest step ✓ [1]

- (ii) step 1 (RDS) $H_2(g) + 2 NO(g) \checkmark \longrightarrow N_2O(g) + H_2O(l)$ step 2 $H_2(g) + N_2O(g) \longrightarrow N_2(g) + H_2O(l)$ rest of equations \checkmark [2]
- (d)(i) NH₃, -3 ✓ NO, +2 ✓ HNO₃ +5 ✓
 - (ii) 4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(l)
 products + reactants → 1 mark; balancing → 1 mark ✓ √
 [2]
 - (iii) molar masses NH₃ = 17; HNO₃ = 63 ✓
 mass = 700 000 x 17/63 = 1.89 x 10⁵ tonnes ✓ calc value 1.888888.... x 10⁵
 ans: mark could be consequential on incorrect molar masses. [2]

[Total: 18]

3. (a) Empirical formula = C : H : O =
$$40.0/12$$
 : $6.7/1$: $53.3/16$ = 3.33 : 6.7 : 3.33 \checkmark = CH_2O \checkmark mass CH_2O = 30 ; M_r = 90 : molecular formula = $C_3H_6O_3$ \checkmark [3]

(b)
$$K_{a} = \frac{[H^{+}(aq)][A^{-}(aq)]}{[HA(aq)]} / \frac{[H^{+}(aq)]^{2}}{[HA(aq)]} \checkmark$$

$$\therefore 1.2 \times 10^{-5} = \frac{[H^{+}(aq)]^{2}}{1.5}$$

$$[H^{+}(aq)] = \sqrt{\{(1.2 \times 10^{-5}) \times (1.5)\}} = 4.2 \times 10^{-3} \text{ mol dm}^{-3} \checkmark$$

 $pH = -log[H^{+}(aq)] \checkmark = -log 4.2 \times 10^{-3} = 2.4 / 2.37 \checkmark$

4 marks: K_a expression√;

[H⁺]√;

pH expression√;

calculation of pH from [H⁺] (ecf) ✓

Common error: Without square root, answer is 4.7/ 4.7447... ✓ ✓ ✓ x

(c)(i) A solution that minimises changes/resists change in pH after addition of acid/alkali
NOT 'maintains constant pH' or 'cancel out' [1]

- (ii) $CH_3COOH = H^+ + CH_3COO^- / CH_3COOH + H_2O = H_3O^+ + CH_3COO^-$ [1]
- (iii) The weak acid or CH₃COOH reacts with added alkali / added alkali reacts with H⁺ ✓

 The base or CH₃COO⁻ reacts with added acid ✓

 Direction of movement indicated for one change / indication of the products

 formed for one change ✓

 [3]
- (d) effect on pH increases ✓

 explanation equilibrium → left ✓

 H⁺ removed by CH₃COO⁻ ✓

[Total: 15]

[3]

[4]

4. (a) Pressure: 3 marks

high pressure fewer gaseous moles on right Compromise: pressure used but too much is requires too much energy/high

costs/causes safety issues/thick pipes ✓

Temperature: 4 marks

low temperature ✓ reaction is exothermic ✓

Increased temperature needed to increase the rate/low temperature gives a slow rate.

Compromise: idea of a compromise between rate and equilibrium amount √

7 marking points → 6 max

Clear, well-organised, using specialist terms √

[7]

(b)(i)

what citric acid does-

citric acid dissociates ✓

H⁺ released / H₂O accepts H⁺/behaves as a base ✓

equation-

$$H_3A + 3H_2O \longrightarrow 3H_3O^+ + A^{3-}$$

or $H_3A \longrightarrow 3H^+ + A^{3-}$

or
$$H_3A + H_2O \longrightarrow H_3O^+ + H_2A^-$$

or H₃A → H⁺ + H₂A⁻ ✓ (or other intermediate dissociation)

The equation alone will also score the 2 'what citric acid does' marks.

how H+ reacts-

H⁺ now reacts with HCO₃⁻ ions/NaHCO₃ ✓

equation:

The equation alone will also score the 'how H' reacts' mark.

5 marks —→[4] max

(ii) Molar mass of NaHCO₃ = 84.0 ✓

amount of NaHCO₃ = $0.5/84.0 = 5.95 \times 10^{-3} \text{ mol } \checkmark$

3 mol NaHCO₃ reacts with 1 mol citric acid ✓

amount of citric acid = $5.95 \times 10^{-3}/3 = 1.98 \times 10^{-3} \text{ mol} \checkmark$

mass of citric acid required = $1.98 \times 10^{-3} \times 192 = 0.380 \text{ g}$ (allow 0.4 a)

Answer of 0.127g / 0.12698 g from dividing by 3 twice \longrightarrow \checkmark \checkmark \checkmark \checkmark

[5]

[Total: 16]