

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2815/04

Methods of Analysis and Detection

Tuesday

25 JUNE 2002

Morning

50 minutes

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number

TIME 50 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

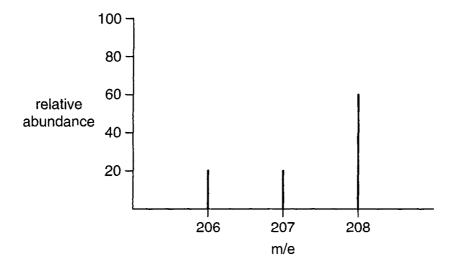
FOR I	FOR EXAMINER'S USE		
Qu.	Max.	Mark	
1	9		
2	12		
3	14		
4	10		
TOTAL	45		

2

BLANK PAGE

3

For Examiner's Use


Answer all questions.

1	(a)	The amino acid content of a protein may be examined using electrophoresis. Briefly outline how a protein may be broken down into its constituent amino acids ready for analysis.
		[3]
	(b)	The diagrams below show the positions of a sample of a mixture of amino acids on a strip of filter paper before and after electrophoresis.
		before +
		after + • • • • — —
		(i) On the lower diagram,
		 label with a P, any amino acid which was positively charged at the pH of the buffer solution used,
		2. label with an S , the amino acid which is likely to have the smallest $M_{\rm f}$. [2]
		(ii) Explain why the amino acid labelled Q did not move during electrophoresis.
		[2]
	(c)	A modified form of electrophoresis is used in the technique known as 'DNA fingerprinting'.
		State two uses of DNA fingerprinting.
		[2]
		[Total : 9]

4

For Examiner's Use

2 (a) The mass spectrum shown below was obtained from a sample of lead.

Calculate the relative atomic mass, $A_{\rm r}$, of the sample to one decimal place. Show your working.

[2]

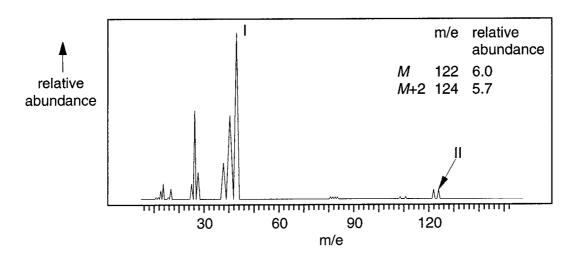
(b) Compound **J** gave a mass spectrum with an M peak at 122. The ratio of the heights of the M and (M+1) peaks was 15.0 to 1.15. Compound **J** could be either $C_4H_{10}O_4$ or $C_7H_6O_2$.

Show, by calculation, which of the two formulae is correct.

[3]

5

For Examiner's Use


(c) High resolution mass spectrometry can be used to distinguish between compounds with very similar values for M_r .

In countries, such as Kenya, which have limited oil resources, 'gasohol' (a mixture of gasoline and ethanol) is used as a fuel for motor vehicles. In testing for possible pollutants from cars burning 'gasohol', the mass spectrum of the exhaust gases showed peaks at m/e values of 30.0105 and 32.0261.

element	relative isotopic mass
hydrogen, ¹ H	1.0078
carbon, ¹² C	12.0000
nitrogen, ¹⁴ N	14.0031
oxygen, ¹⁶ O	15.9949

Using the table of accurate relative isotopic masses above, identify the **two** pollutants. Show your working.

(d) The mass spectrum shown below was produced from compound L, C_xH_vZ .

- (i) By examining the M and (M + 2) peaks, deduce the identity of Z.
 -[1]
- (ii) Identify the species responsible for peaks I and II.

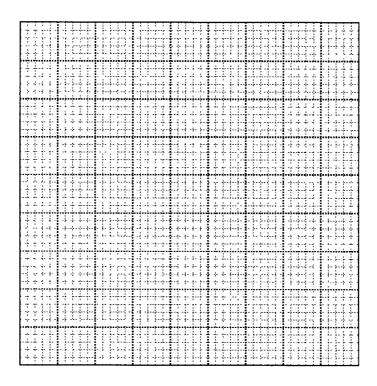
2815/04 S02

(iii) Suggest a structural formula for compound L.

[1]

[2]

[Total: 12]


6

For Examiner's Use

3 (a) The sodium content of a sample of soil was determined using flame emission spectroscopy. A series of standard solutions was prepared and gave the following emission readings.

concentration/ μ g cm⁻³ 0 20 40 60 80 emission reading 3 21 40 58 77

(i) Plot a calibration graph for these standard solutions. $1\mu g = 10^{-6} g$

[2]

(ii) A 1.00 g sample of soil was dissolved in hydrochloric acid. The solution was neutralised, and then made up to 100 cm³. The emission reading of this sample was found to be 47. Calculate the percentage by mass of sodium in the soil.

[2]

- (b) The sodium emission produces an intense yellow light of wavelength 590 nm. [Velocity of light = $3.00 \times 10^6 \, \text{m s}^{-1}$; the Planck constant = $6.63 \times 10^{-34} \, \text{J s}$; the Avogadro constant = $6.02 \times 10^{23} \, \text{mol}^{-1}$]
 - (i) Calculate the frequency of this light.

Answer s⁻¹ [1]

7

For
Examiner's
Use

(ii) Calculate the energy, in kJ mol⁻¹, of this light.

		Answer kJ mol ⁻¹	[2]
(c)	Org	anic molecules can absorb energy in the uv/visible region of the spectrum.	
	(i)	What process in a molecule is responsible for such absorptions?	
			[1]
	(ii)	State two functional groups which lead to such absorptions in organic molecules	3.
			[2]

(d) Compounds M and N are found in sun-screen preparations. Both compounds absorb ultraviolet radiation.

$$H_3C$$
 $C = O$
 C_6H_{13}

М

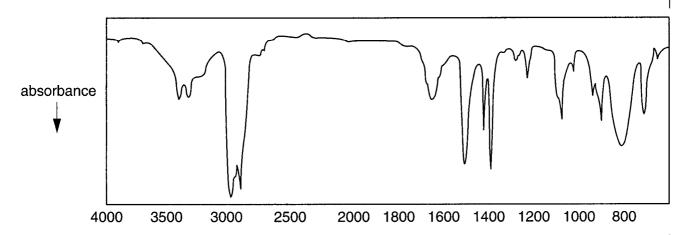
(i) Suggest why these compounds absorb radiation of different wavelengths.

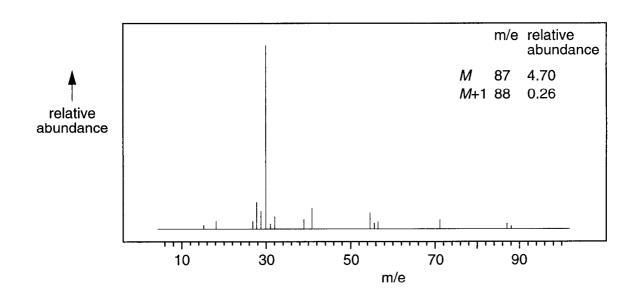
(ii) Deduce which compound absorbs at **shorter** wavelengths, and explain your answer.

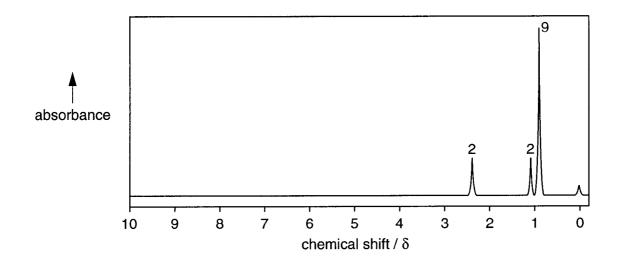
Compound

Explanation

.....[2]


[Total : 14]


8


For Examiner's Use

4 In this question one mark is awarded for quality of written communication.

The spectra shown below were obtained from compound **Q**, which contains the elements carbon, hydrogen and nitrogen only.

For Examiner's Use

	9
(a)	Consider the infra-red, mass and n.m.r. spectra in turn. Explain what information each spectrum gives about the structure of ${\bf Q}$.
	[7]
(b)	Use your answers to (a) to suggest what functional group(s) are present in Q and hence give a possible structure for the compound.
	[2]
	Quality of Written Communication [1]
	[Total : 10]