

Subject: Methods of Analysis & Detection Code: 2815/04

Session: June Year: 2002

Final Mark Scheme

MAXIMUM MARK

45

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme Page 1 of				Unit Code 2815/4	Session Year Ve June 2002		Ver	rsion 1	
Abbreviations, annotations and conventions used in the Mark Scheme		/ = alternative and acceptable answers for the same marking point , = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument							
Question	Ехр	ected A	nswers					Marks	
1	(a)	Protein	is heate	d / undergoes hydrol	ysis			(1)	
				c acid / dilute acid r nitric acids				(1)	
		for seve	ral hours	;				(1)	
	(b)	(i)							
		(ii) Q	ıs neutra	I / at the isoelectric p	oint			2 x (1)	
		Q	is a zwitt	erion / H₃ ⁺ N - R - CC	2			(1)	
	(c)	Allow tw	<u>∕o</u> of the	following				(1)	
		Fo Me Ar	orensic te edicine - chaeolog	g relationships/pateri esting of biological sa bone marrow matchi gy - matching organic genetically modified	mples ng c fragments				
								2 x (1)	
							Total	[9]	

Downloaded from http://www.thepaperbank.co.uk

Question	Expected Answers					
2	(a)	$A_r = (206 \times 0.2) + (207 \times 0.2) + 208 \times 0.6)$ = 207.4 (allow + for abundances)				
	(b)	$M:M+1 = 100. 1.1 \times n$	(1)			
		Number of carbon atoms = $\frac{1.15 \times 100}{15 \times 1.1}$ = 7	(1)			
		J is $C_7H_6O_2$	(1)			
	(c)	$30.0105 = CH_2O (12.0000 + (2 \times 1.0078) + 15.9949)$	(1)			
		$32.0261 = CH_3OH (12.0000 + 15.9949 + (4 x 1.0078))$				
		If two formulae are given with no working (1) only				
	(d)	(i) Z is bromine	(4)			
		(ii) I at 43 is ⁺ C ₃ H ₇ }	(1)			
		} charge (1) (need only be shown once) II at 124 is C ₃ H ₇ ⁸¹ Br ⁺ }	(1) (1) (1)			
		(iii) L is CH ₃ CHBrCH ₃ (accept 1- or 2-bromopropane)	(1)			

Total [12]

Question	Expected Answers				
3	(a)	(i)			
		Line + axes	2 x (1)		
		 (ii) Emission of 47 gives concentration of 48 mg cm⁻³ (conseq from graph) This is equivalent to 48 x 100 μg/100 cm³ therefore 4.8 x 10⁻³ g of Na per 1g sample	(1) (1)		
	(b)	(i) $\lambda = \frac{c}{f}$ therefore $f = c/\lambda$ $f = \frac{3 \times 10}{590 \times 10^{-9}} = 5.08 \times 10^{14} \text{ (or } 5.08 \times 10^{12}\text{)}$	(1)		
		(ii) $\Delta E = \frac{hcL}{\lambda I}$ (or hfL)	(1)		
		= 203 kJ mol ⁻¹ (or 2.03 kJ mol ⁻¹)	(1)		
	(c)	 (i) Promotion of electrons in molecular orbitals (ii) Any group containing 'n' or 'π' electrons 	(1)		
		e.g. C=C C-O C=O N-H etc	2 x (1)		
	(d)	(i) They contain different chromophores / different amounts of delocalisation / different energies	(1)		
		(ii) Compound M	(1)		
		It contains the shorter chromophore / lesser amount of delocalisation / or energy separation is greater	(1) (1)		
		Total	(')		

Mark Scheme

[14]

Downloaded from http://www.thepaperbank.co.uk

Question	Expected Answers				Marks
4	(a)	Mass	M:M+1 peaks show there are $0.23 \times 100 = 5$ carbon atoms 4.10×1.1	(1)	
			M _r = 87 means only one N atom	(1)	
			Major peak is at 30 -> suggest	$^{\dagger}\text{CH}_{2}\text{NH}_{2}$ (1)	
		<u>i.r.</u>	Major absorption at >3000 cm ⁻¹ => N	-H (1)	
		N.m.r.	3 proton environments Peak at 0 9 δ suggests -CH ₃ 9 identical protons => 3 methyl group Peak at 1 2 δ suggests a -CH ₂ - group Peak at 2.4 δ suggests an -NH ₂ group Lack of splitting confirms labile N-H	(1) (1) (1)	Max 7
			Qua	ality of written communication	(1)
	(b) Functional groups				
		-NH	2		(1)
		Q is	CH_3 CH_3 C - CH_2 NH_2 CH_3		(1)

[10]

Total