

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY 2813/01

How Far, How Fast?

Wednesday

29 MAY 2002

Morning

45 minutes

Candidates answer on the question paper.
Additional materials:

Data Sheet for Chemistry
Scientific Calculator

Candidate Name	Centre Number	Candidate Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE							
Qu.	Max.	Mark					
1	5						
2	7						
3	5						
4	14						
5	7						
6	7						
TOTAL	45						

2

Answer all questions.

Examine Use

- 1 The enthalpy change for the reaction between hydrochloric acid, HCl(aq), and sodium hydroxide, NaOH(aq), can be determined in the following way.
 - 50.0 cm³ of 2.00 mol dm⁻³ HCl(aq) is placed in a plastic cup, and its temperature recorded.
 - 50.0 cm³ of 2.00 mol dm⁻³ NaOH(aq) is placed in another plastic cup, and its temperature recorded.
 - The two solutions are mixed with stirring, and the final temperature recorded.

The following results were obtained from one such experiment:

initial temperature of both HCl(aq) and NaOH(aq) = 18.0 °C final temperature after mixing = 31.9 °C

(Take the specific heat capacity of all solutions to be $4.18 \,\mathrm{J}\,\mathrm{g}^{-1}\,\mathrm{K}^{-1}$, and the densities of all solutions to be $1.00\,\mathrm{g}\,\mathrm{cm}^{-3}$.)

(a) Calculate the heat evolved in the above experiment. Include units in your answer.

heat evolved =[3]

(b) Calculate how many moles of HC1 were used.

moles of HCI =[1]

(c) Hence calculate the enthalpy change, in kJ, for the reaction of 1 mol of HCl with 1 mol of NaOH.

enthalpy change =..... kJ [1]

[Total : 5]

3

For Examiner's Use

2 On heating in a lime kiln at 1000 °C, limestone decomposes according to the following equation.

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

 $\Delta H = +178 \,\text{kJ} \,\text{mol}^{-1}$

(a) Using the axes below, sketch the enthalpy profile of this reaction. Label the activation energy $E_{\rm A}$ and the enthalpy change ΔH .

[3]

(b) Suggest two reasons why this reaction needs heating to a high temperature.

1			***************************************
	·		
		***************************************	***************************************
2		***************************************	

(c) When water is added to calcium oxide, CaO, it becomes 'slaked' to give calcium

hydroxide, Ca(OH)₂.

$$\Delta H = -82 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Calculate the enthalpy change ΔH_r in the following cycle.

 $CaO(s) + H_2O(l) \longrightarrow Ca(OH)_2(s)$

$$\Delta H_{\rm r} = \dots$$
 kJ mol⁻¹ [2]

[Total: 7]

4

For Examine Use

3 The chlorination of methane in the gas phase involves the following two steps.

$$CH_4 + Cl \longrightarrow CH_3 + HCl$$

reaction 3.1

$$\mathrm{CH_3} + \mathrm{C}l_2 \,\longrightarrow\, \mathrm{CH_3}\mathrm{C}l + \mathrm{C}l$$

reaction 3.2

Table 3.1 lists some relevant average bond enthalpies.

Table 3.1

bond	bond enthalpy/kJ mol ⁻¹
С—Н	+413
C—CI	+327
H—Ci	+432
Cl—Cl	+243

(a) (i) Use these bond enthalpies to calculate the enthalpy changes of reactions 3.1 and 3.2.

reaction 3.1

		AnswerkJ mol ⁻¹
	reaction 3.2	
		A
		AnswerkJ mol ⁻¹ [2]
(ii)	Suggest which might be the faster answer.	of these two reactions. Give a reason for your
		[1]

5

For Examiner's Use

(b) An alternative reaction route has been suggested for this reaction, which involves the following two steps.

I ₃ Cl + H reaction 3.3	
+ Cl reaction 3.4	
this reaction route is unlikely to take place.	
	[2]
[To	otal : 5]

6

For Examine Use

4 It has been suggested that using methane, CH₄, as a fuel for cars rather than petrol would decrease the amount of carbon dioxide produced per mile. This question looks at how much this reduction in CO₂ emission might be. You may assume that petrol is pure octane, C₈H₁₈.

The combustion of methane can be represented by the following equation.

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$
 $\Delta H_c^{\oplus} = -890 \text{ kJ mol}^{-1}$

(a) Balance the following equation for the combustion of octane.

$$C_8H_{18} + \dots O_2 \rightarrow \dots CO_2 + \dots H_2O$$
 [1]

(b) The enthalpy change of combustion, ΔH_{c}^{\oplus} , of octane is -5472 kJ per mole of octane.

Use your balanced equation and the given ΔH_{c}^{e} data to calculate for each fuel:

- (i) the enthalpy change per mole of CO₂ produced, and hence
- (ii) the number of moles of CO₂ produced per kJ of heat energy given out.

Write your answers in the Table below.

fuel	ΔH c per mole of alkane burned / kJ	ΔH [⊕] _c per mole of CO ₂ produced / kJ	moles of CO ₂ produced per kJ of heat given out
methane	-890		
octane	-5472		

[4]

(iii) Hence calculate a value for the ratio:

moles of CO₂ produced per kJ from methane moles of CO₂ produced per kJ from octane

Ratio	[4]	ł
⊰ati∩		Ĺ

7

(c) Both methane and octane undergo incomplete combustion in a car engine. As a result

Examine Use

of this, unburned hydrocarbons and carbon monoxide, CO, occur in the exhaust gases. Nitrogen monoxide, NO, is also formed inside the engine. All three pollutants can be removed by fitting a catalytic converter to the exhaust system.
(i) State one environmental consequence of each of the following emissions.
unburned hydrocarbons
,
СО
NO
[3]
(ii) How is the NO formed in a car engine?
[1]
(iii) NO and CO react together on the surface of the catalyst. Write an equation for this reaction.
[1]
(iv) What is the catalyst made of?
[1]
(v) The catalyst is a heterogeneous catalyst. What is the meaning of heterogeneous?
[1]
(vi) The catalytic converter is positioned as close to the engine as possible, so that it heats up quickly. Why does the converter work best when it is hot?
[1]
[Total : 14]

8

For Examiner's Use

5 Methanol is an important industrial organic chemical. It is used as a solvent and a feedstock for the manufacture of several other compounds such as ethanoic acid. A two-stage process to make methanol from natural gas, methane, is summarised in the following equations.

read	ction	5.1	$CH_4(g) + H_2O(g)$		Ni at 700 °C		$CO(g) + 3H_2(g)$	ΔH = +207 k	J mol ⁻¹
read	tion	5.2	CO(g) + 2H ₂ (g)	Cra	t 300 °C and 30 MF		CH ₃ OH(g)	$\Delta H = -129 \mathrm{k}$	J mol ⁻¹
(a)	Des	cribe a	and explain the eff	ect c	of increasing the	ie pi	ressure on the r a	ate of reactio	n 5.1.
	,								

		•••••			•••••		***************************************		[2]
(b)	Des	cribe a	and explain how th	e ec	uilibrium posi	sitio	n of reaction 5.1	is affected b	у
	(i)	increa	asing the temperat	ure,					
						· ···			
			***************************************		•••••				[2]
	(ii)	increa	asing the pressure						
					•••••	•••••			
			***************************************		***************************************			•••••••	
									[2]
(c)			5.2 uses the proc cannot proceed or						ese two
					•••••	•••••		• • • • • • • • • • • • • • • • • • • •	
				•••••	•••••			•••••	[1]
								ד]	otal : 7]

9

⊢or
Examin
Use

hydrochloric acid in which it behaves as an acid. Give any relevant observati both full equations and ionic equations.	ons, and write
In this question, 1 mark is available for the quality of written communication.	
	•••••
	••••••
	•••••••
	••••••
	[6]
	QWC [1]
	[Total : 7]

10

BLANK PAGE

11

BLANK PAGE

Downloaded from http://www.thepaperbank.co.uk
12
OCR has made every effort to trace the copyright holders of items used in this Question paper, but if we have inadvertently overlooked any, we apologise.
2813/01 Jun02