Subject: Gases, Liquids & Solids Code: 2815/05 **Session: January** Year: 2002 Mark Scheme MAXIMUM 60 H5 | (a) | Any | <u>two</u> of | | |-----|-------|---|---------------------------| | | Par | ticles do not attract each other / intermolecular forces are negligible | • | | | Vol | ume of particles is negligible | | | | Coll | lisions are perfectly elastic (or equiv) | [2] | | | | | | | (b) | All (| gases show some forces of attraction (or they couldn't be liquefied) | | | | Par | ticles have a finite volume | | | | Coll | isions with the walls of the vessel transfers energy to or from the gas
(2 of these) | [2] | | (c) | Larç | ge HC <i>l</i> dipole compared to atomic helium | [1] | | (d) | (1) | Vapour pressure would increase | (1) | | | | Each component exerts its own v.p. / decrease H-bonding | (1) | | | (11) | Boiling point would decrease | (1) | | | | Mixture boils when combined v.p. = atmospheric pressure | (1)
[4]
[Total : 9] | - 2 (a) (i) The equilibrium concentration of a gas in a solvent at a particular temperature is proportional to the partial pressure of the gas (or equiv) (1) - (ii) Gas must not react with the solvent (1) - Gas must be in the same atomic/molecular state in both phases NOT temperature must be constant (in definition) (1) - [3] - (b) (i) 4 = [X] solv [X]H₂O (1) - (II) 4 = [89] therefore 8g extracted into X [29] - (III) $\frac{1 \text{st ext}}{10 x} = \frac{4 = [x/50]}{10 x}$ therefore $\frac{x/50}{10 x} = 4$ [160] 100 therefore 2x = 4 => 2x = 40 - 4x10-x $$6x = 40$$ therefore $x = 6.66$ (1) thus 3 34g remain in water layer $$6y = 13 \ 36$$ therefore $y = 2.23$ (1) [Total: 8] 3 | (a) | Allo | ow 110 5 – 111 5 °C | (1) | | |-----|--|--|-------------------|--| | (b) | In an ideal mixture the interactions between the two pure substances are the sal
between particles of the two different substances
There is no volume change on mixing
There is no temperature change on mixing | | | | | (c) | (I)
(II) | Presence of glass rods/beads Counter current water flow (Temperature control) 2 x 1 Material (metal vs glass) | (2) | | | | | No coolant Mixture introduced part way up column Presence of sieve plates/bubble caps Any 1 | (1)
[3] | | | (d) | (1) | Number of steps on boiling point/composition diagram from starting composition to distillate composition | (1) | | | | (11) | Allow 4 - 5 Explanation or construction on diagram | (1)
(1) | | | | (III) | Smaller Each step produces a greater change in composition | (1)
(1)
[5] | | | (e) | A mixture boils when the total vapour pressure of the components equals atmosph pressure (or equiv) The boiling point is lowered to below 100°C reducing the chance of decomposition | | | | | (f) | Boiling point Attraction of ions for water molecules reduces the vapour pressure Higher temperature need for v.p. to reach atmospheric pressure | | | | | | Freezing point Lowering the vapour pressure also reduces the freezing point to below zero lons disrupt lattice formation | | | | | | Sket | tch could score one for each point | [4] | | | | | | | | | 4. | (a) | Marked from candidates phase diagram Labelled axes Both m ps shown Eutectic point labelled 3 of the 4 areas labelled | (1)
(1)
(1)
(1)
[4] | |----|-----|---|---------------------------------| | | (b) | Description of cooling curve method Description of shape of each curve Points described (A range of alternative descriptions would score marks, including diagrams) | (1)
2 x (1)
2 x (1) | | | | Quality of communication | (1)
[6] | | | (c) | Lowers the eutectic point or produces new system or produces new eutectic | (1)
[1] | | | | | [Total : 11] |