2812		Mark Scheme	
1	(a)(i)	F	✓
	(11)	C_6H_{14}	✓
	(iii)	CH ₂	✓
	(b) (i)	C, D and E	✓
		same (molecular) formula/number of atoms of each element, different structure/arrangement of atoms/displayed formula/carbon backb.not "spatial" arrangement	one √
	(c) (i)	c	✓
	(ii)	c	✓
	(iii)	van der Waals	✓
		Any mention of van der Waal's /dispersion/London forces gets one mark	
		C> A &B due to the longer chain /number of electrons hence the great number of vdW's/ surface interaction/ intermolecular forces or convers	er the
		C>D & E the more branched/compact/cannot pack together as close <u>h</u> fewer vdW's/surface interaction/ or converse	ence the
		Penalise only once	

[Total :10]

2. (a) (i) Method mark if each element is divided by its own A_r

C . H : O

÷ by A_r 5 41 . 13.5 · 1.35

÷ by 1.35

4 · 10 : 1

Alternative approach is acceptable and would score both marks.

C : H : C

 $\frac{64.9 \times 74}{100}$: $\frac{13.5 \times 74}{100}$: $\frac{21.6 \times 74}{100}$

48 : 10(9.99) : 16(15.9) ✓

Divide each by its own Ar

4 : 10 : 1

(ii) $C_4H_{10}O = 48 + 10 + 16 = 74$: molecular formula = $C_4H_{10}O$ Must be some working as evidence as they are given $M_r = 74$ in the stem

Any unambiguous structure gets the marks CH₃CH₂CHOHCH₃ is OK and the minimum allowed for the second is (CH₃)₃COH

3 (a) If correct formulae are given instead of name do **not** penalise.

If both formula and name are given and they are conflicting the mark will not be awarded

reaction 1

sodium or potassium hydroxide/ OH'/hydroxide/NaOH/KOH water/(aq)/ H₂O

reaction 2

ammonia/NH₃ ethanol/ethanol+water/alc/C₂H₅OH

reaction 3

sodium or potassium hydroxide/ OH⁻/hydroxide/NaOH/KOH

ethanol/ alc/ C₂H₅OH ✓

(b) Slower:

C-CI bond > C-Br bond/ C-CI bond is shorter/stronger than C-Br bond/ Higher activation energy with C-CI

If faster is given this is incorrect and gets no mark but if they give the reason for it being faster as

Cl is more electronegative/C-Cl is more polar this gets 1 mark

✓ ecf

(ii) $109^{\circ} 28'$ (range $108 - 110^{\circ}$)

(iii) Volatile/low boiling point/ unreactive/ inert/non-flammable/non-toxic ✓

(iv) each takes one (covalent)electron/ $Cl_2 \rightarrow 2Cl \bullet$

(v)	Bond : C-Cl					
	Reason.	C-CI bond weaker/longer/ C-F bond stronger/ C-F>C-CI	✓			
(vı)	CI(●)		✓			
	(•) CCIF ₂		✓			
	If (c) (v) incorrectly identified as C-F you (vi) can be marked consequentially					

[Total : 16]

2812	Mark Scheme	June 2001	
4. (a)	Water/ H₂O/cyclohexanol/C ₆ H ₁₁ OH/C ₆ H ₁₂ O (not H₃PO₄ as it boils/dehydrates @ 213 °C)	✓	
(b) (ı)	100	✓	
(ii)	0 1 mark ecf to (i)	✓	
(iii)	82 (used for M _r of cyclohexene)	✓	
	0.045 (gets both marks)	✓	
(iv)	moles of cyclohexene x 100 moles of cyclohexanol	✓	
	45%	✓	

Part (iv) can be marked consequentially from parts (ii) and (iii) such that

(iii)/(ii) x 100 gets 1 mark

and would get both marks if the mathematics are carried out correctly

[Total : 7]

5. (a)(i) An Electrophile is an electron/lone pair acceptor

- 1
- (ii) Example anything with a + charge (except a metal ion) e.g Cl⁺, NO₂⁺, H⁺ alsoaccept Br₂, Cl₂, H₂SO₄,HBr,H₂
- ✓

(iii) Balanced equation for electrophilic addition,

$$C_2H_4$$
 + XY $\rightarrow C_2H_4XY/$ C_2H_4 + $X_2 \rightarrow C_2H_4X_2$

✓

(b)(i) Nucleophile is a electron/lone pair donor

./

(ii) Example Cl⁻, OH⁻, CN⁻, NH₃, H₂O, ROH

_

(iii) Balanced equation for nucleophilic substitution,

$$RX + Y' \rightarrow RY + X'/RX + HY \rightarrow RY + HX$$

1

typically whilst

Y could be anyone of Cl⁻, OH⁻, CN⁻ HY could be anyone of NH₃, H₂O, ROH

- (c)(ı) Free radical has a single/unpaired electron (**not** a free electron)
- ./

(ii) Example any suitable radical e.g. •Cl, •CH₃, Br•

1

(iii) Balanced equation for a free radical substitution.

$$CH_4 + \bullet Cl \rightarrow \bullet CH_3 + HCl / \bullet CH_3 + Cl_2 \rightarrow CH_3Cl + \bullet Cl / CH_4 + Cl_2 \text{ or } 2Cl \bullet \rightarrow CH_3Cl + HCl$$

[Total: 9]

6. (a)(i) (will be marked as a single sub-unit 5 marking points for 4 marks worth 4 marks) There are 5 marking points 4 marking points for 3 marks with a maximum of 4. If MnO₄ used max = 3 3 marking points for 2 marks 2 marking points for 1 mark marks Cr₂O₇²⁻ / dichromate/ sodium or potassium dichromate/ Na₂Cr₂O₇/ K₂Cr₂O₇ Acidified/ H⁺/ sulphuric acid / H₂SO₄ reflux/heat/warm Orange < to Green 🗸 Record marks in the margin as $5 \rightarrow \underline{4}$ or $3 \rightarrow 2$ (ii) Reflux: ✓ to ensure complete oxidation/ avoid partial oxidation/to form the acid/to avoid distillation of aldehyde (iii) C7H16O /C7H15OH (iv) $C_7H_{16}O + 2[O] \rightarrow C_7H_{14}O_2 + H_2O$ (1mark for both products) Correctly balanced equation gets both marks (v) aldehyde/C₇H₁₄O/ 2-ethyl-3-methylbutanal (b) (2-ethyl-3-methylbutan-2-ol is a) tertiary alcohol

tertiary alcohols are **not** (readily) oxidised/does not react with (H⁺)/Cr₂O₇²-

[Total . 12]

7. (bromine is) decolourised (do not accept clear)

Product: 1,2-dibromoethane

Maximum of 4 marks for the mechanism

1 mark for the carbonium ion/ carbocation

Electrophilic addition

Induced dipole in the Br₂/ dipoles shown correctly on the Br-Br bond

curly arrow on Br-Br bond as shown/hetrolytic fission

Curly arrow from the π - bond to the bromine or words to that effect

Intermediate carbonium ion/ carbocation

Curly arrow from Br back to the carbonium ion/ carbocation/nucleophilic attack/Br forms a covalent bond with the carbocation

Lone pair of electrons shown on the Br (and curly arrow from lone pair to the carbonium ion/ carbocation)/ Br acys as a lone pair donor

[9marks; max = 6]

1 mark for quality of written expression awarded for the description / layout of the mechanism making use of appropriate chemical terms/symbols. The mark should be awarded if two or more of the following are used correctly:

- lone pair
- polarised
- hetrolytic fission/hetrolysis
- induced dipole
- curly arrows
- carbonium ion/ carbocation
- electrophilic addition

If two or more chemistry marks are awarded for the mechanism I would also expect the QWC to be awarded.

Record marks for the question by counting ✓ given for the chemistry as a total (max =6) followed by either ✓ QWC or xQWC and the total for the question {chemistry + QWC}

circled at the end of the question. It should look something like.

√QWC

8. (a) Cracking:

The lighter/smaller/shorter fractions are the more useful/ in demand

Heavier/longer chains cracked into shorter chains + alkene

Suitable balanced equation

Using heat/catalyst/ both

Point of fission is variable therefore get a great variety of products

Alkenes have great importance as a starting point for other products/suitable example/equation e.g. ethanol/polymers etc

Reforming:

(Reforming converts straight chains into) ring compounds/cycloalkanes/arenes✓

Suitable balanced equation for cycloalkane \checkmark $C_6H_{14} \rightarrow C_6H_{12} + H_2$

Suitable balanced equation for arene $C_6H_{14} \rightarrow C_6H_6 + 4H_2 / C_6H_{12} \rightarrow C_6H_6 + 3H_2$

Isomerisation:

Isomerisation converts straight chains into branched chains.

Suitable example.

✓

Ring compounds and/or branched chain compounds are better fuels than straight chain compounds (**not** just good fuels, there must be a comparison)/ added to petrol to promote smoother combustion/ avoid knocking/ increase octane number or rating.

12 max = 9

(1 mark is available for the quality of written communication.)
This mark should be awarded for spelling, punctuation and grammar. It will be unusual **not** to give the mark.
✓

Record marks for the question by counting \checkmark given for the chemistry as a total (max =9) followed by either \checkmark QWC or xQWC and the total for the question {chemistry + QWC} circled at the end of the question. It should look something like:

√QWC