

HOW FAR, HOW FAST?

Mark Scheme 2613/01 June 2001

2813/01

look for:

(ii)

Mark Scheme

June 2001

[3]

[1]

total 11

[N.B. NOT element in its standard state, and NOT 1 mol of elements, if a compound is being made] (is formed from its) elements under standard conditions or at 100 kPa and a stated temperature or at room temperature and pressure (ii) H₂(g) + ½O₂(g) → H₂O(l) balanced for 1 mole of water ✓ state symbols (u/c -anything on left, but has to be H₂O(l) on RHS) ✓ (b) x - 75 - 2(286) = -394 [x = 75 + 572 - 394] (x 2) ✓ (correct +/- signs) ✓ x = (+)253 (kJ mol⁻¹) ✓ ecf correct ans ⇒ [3] marks. Award [2] for any of the following: -33, +103, -253, -891, +1041	Question	Expected Answers	Marks
(ii) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ balanced for 1 mole of water \checkmark state symbols (u/c -anything on left, but has to be $H_2O(l)$ on RHS) \checkmark (b) $\times -75 - 2(286) = -394$ [$\times = 75 + 572 - 394$] ($\times \times \times$	1 (a) (i)	[N.B. NOT element in its standard state, and NOT 1 mol of elements, if a compound is being made] (is formed from its) elements under standard conditions or at 100 kPa	
state symbols (u/c -anything on left, but has to be $H_2O(I)$ on RHS) \checkmark (b)		and a stated temperature or at room temperature and pressure	[2]
(b) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(ii)	$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ balanced for 1 mole of water \checkmark	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		state symbols (u/c -anything on left, but has to be H₂O(I) on RHS) ✔	[2]
correct ans \Rightarrow [3] marks. Award [2] for any of the following: -33, +103, -253, -891, +1041 Award [1] for any of the following: +33, -183, -605, +755, -1041 [3] (c)(i) enthalpy $(E_a =) 68$	(b)	1	
Award [2] for any of the following: -33, +103, -253, -891, +1041 Award [1] for any of the following: +33, -183, -605, +755, -1041 [3] (c)(i) enthalpy			
(c)(i) Award [1] for any of the following: +33, -183, -605, +755, -1041 [3]		, <u> </u>	
enthalpy (E _a =) 68			[3]
(E _a =) 68	(c)(i)	<u> </u>	
		enthalpy	}
$N_2(g) + 3H_2(g)$		(E _a =) 68	
		$N_2(g) + 3H_2(g)$	
(ΔH =) -92		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

$N_2(g) + 3H_2(g)$ progress of reaction ΔH shown as exothermic or -92 kJ mol⁻¹ E_{act} or 68 kJ mol⁻¹ from reactants to trans. state f product labelled correctly after transition state f (no ecf)

2813/01

Mark Scheme

Question	Expected Answers	Marks
2 (a)	$C_6H_6(1) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(1)$ (or 15/2) Correct formulae and state symbols \checkmark balanced for 1 mole of C_6H_6 \checkmark	[2]
(p)	x - 3267 = 3(-1301) (x 3) (correct +/- signs)	
*	x = -636 (kJ mol ⁻¹)	[3]
(c) (i)	(rate) increases more molecules have E > E _a or enough energy to react (at higher T) ✓ collision rate increases (with T) or there are more (effective) collisions N.B. there is no mark for "molecules go faster/have more energy"	[3]
(ii)	(rate) increases (because they are closer together) molecules collide more often or more collisions or more molecules in contact with the catalyst N.B. no mark for molecules go faster/have more energy	[2]
(d)	it's a catalyst or it speeds up the reaction by lowering E _{act} or providing alternative route with lower energy or adsorbs/forms (temporary) bonds with the reagents N.B. no mark for "provides surface" or "extra surface area"	[2] total 12

2813/01

Mark Scheme

Question	Expected Answers	Marks
3 (a)	 forward rate = reverse rate (not concentration of reactants and products are equal) can be approached from either direction or reversible reaction or (constant) 	
	 change from reactants to products and vice versa no change in overall macroscopic properties (or one specified property, e.g. colour/concentration) or appears to have stopped 	
	takes place in a closed system (any two bullet points) ✓ ✓	[2]
(b)	a change in conditions <i>or</i> a disturbance will cause a shift in the (position of) <u>equilibrium</u> ✓	
	in the direction that minimises/opposes/reduces/attempts to balance out/ the effect of the change	i
*	N.B. do not accept "cancels" or "equals" or "balances" or "restores" without the "attempt"	[2]
(c)	solution would turn <u>yellow</u> (allow yellow-green) (do not allow this mark if candidate says it goes yellow and then back to green again!)	
	(increasing/added [H ⁺] pushes) the equilibrium to left hand side or equilibrium shifts to form more HIn ecf ✓ ecf: if candidate states that the colour goes blue, then the first mark is lost, but the second can be awarded for stating that the eqm. goes to the right	[2]
(d)	(colour goes from yellow to) green u/c ✓ then to blue (allow blue-green) ✓ (do not allow this mark if candidate says it goes blue and then back to	
*	green again!) N.B. allow e.c.f. for both these marks as follows: if candidate has said in (c) that colour goes blue, then these two marks are for (blue to) green [1]; and yellow(-green) [1] (don't allow "blue" in both!)	
*	OH ⁻ reacts with/removes H ⁺ (or equation) or is a proton acceptor or neutralises the acid	
	N.B. not just "OH⁻ is a base" shifting the equilibrium to the right hand side or equilibrium shifts to form more In⁻ ecf • ecf • ecf	[4] total 10
	(the word "equilibrium" need only appear once in parts (c) and (d). If it is omitted from both (c) and (d), deduct [1] only. If it is omitted from only one part, allow full marks (as long as the chemistry is correct!))	

2813/01

Mark Scheme

Question	Expected Answers	Marks
2 (a)	$C_6H_6(I) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(I)$ (or 15/2) Correct formulae and state symbols \checkmark balanced for 1 mole of C_6H_6 \checkmark	[2]
(b)	x - 3267 = 3(-1301)	
*	$x = -636$ (kJ mol ⁻¹) \checkmark ecf correct ans \Rightarrow [3] marks. Award [2] for any of the following: +636, +1966, ±7170, +665 Award [1] for any of the following: -1966, ±4568, -665 If no other mark has been awarded, you could award [1] for 3 x (-)1301	[3]
(c) (i)	(rate) increases more molecules have E > E _a or enough energy to react (at higher T) collision rate increases (with T) or there are more (effective) collisions N.B. there is no mark for "molecules go faster/have more energy"	[3]
(ii)	(rate) increases (because they are closer together) molecules collide more often or more collisions or more molecules in contact with the catalyst N.B. no mark for molecules go faster/have more energy	[2]
(d)	it's a catalyst <i>or</i> it speeds up the reaction by lowering E _{act} or providing alternative route with lower energy or adsorbs/forms (temporary) bonds with the reagents N.B. no mark for "provides surface" or "extra surface area"	[2] total 12

2813/01

Mark Scheme

Question	Expected Answers	Marks
3 (a)	forward rate = reverse rate (not concentration of reactants and products are equal)	
	 can be approached from either direction or reversible reaction or (constant) change from reactants to products and vice versa 	
	no change in overall macroscopic properties (or one specified property, e.g. colour/concentration) or appears to have stopped	
	takes place in a closed system (any two bullet points) ✓ ✓	[2]
(b)	a change in conditions <i>or</i> a disturbance will cause a shift in the (position of) equilibrium	
	in the direction that minimises/opposes/reduces/attempts to balance out/ the effect of the change	
*	N.B. do not accept "cancels" or "equals" or "balances" or "restores" without the "attempt"	[2]
(c)	solution would turn <u>yellow</u> (allow yellow-green) (do not allow this mark if candidate says it goes yellow and then back	
	to green again!)	
	(increasing/added [H ⁺] pushes) the <u>equilibrium</u> to left hand side <i>or</i> <u>equilibrium</u> shifts to form more HIn <u>ecf</u> ✓	
	ecf: if candidate states that the colour goes blue, then the first mark is lost, but the second can be awarded for stating that the eqm. goes to the right	[2]
(d)	(colour goes from yellow to) green u/c ✓	
ı	then to <u>blue</u> (allow blue-green) (do not allow this mark if candidate says it goes blue and then back to green again!)	
*	N.B. allow e.c.f. for both these marks as follows: if candidate has said in (c) that colour goes blue, then these two marks are for (blue to) green [1]; and yellow(-green) [1] (don't allow "blue" in both!)	
*	OH ⁻ reacts with/removes H ⁺ (or equation) or is a proton acceptor or neutralises the acid	
	N.B. not just "OH" is a base" shifting the equilibrium to the right hand side or equilibrium shifts to form more In ecf ecf ecf ecf	[4] total 10
	(the word "equilibrium" need only appear once in parts (c) and (d). If it is omitted from both (c) and (d), deduct [1] only. If it is omitted from only one part, allow full marks (as long as the chemistry is correct!))	

Question	Expected Answers	Marks
4 (a)	a strong acid is completely ionised/dissociated (to H ⁺ (aq)) or gives 1 mol of H ⁺ (aq) for each 1 mol of HA a weak acid is incompletely ionised/dissociated (NOT unionised)	
	or gives less than 1 mol of H ⁺ (aq) for each 1 mol of HA N.B. if neither of the above two marks can be awarded, you can award [1] for the statement that "strong acids donate protons/H+ more readily than weak acids	[2] [1]
(b) (i)	$CaCO_3 + 2HA \longrightarrow CaA_2 + H_2O + CO_2$ or $CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2O + CO_2$ or $CO_3^{2-} + 2H^+ \longrightarrow H_2O + CO_2$	
(ii)	 (average) energy/speed/movement of molecules/particles increases with temperature more (molecules) have E > E_a (at higher T) or have enough energy to react N.B. do not allow this point if candidate has stated that the E_a decreases with temperature activation energy is the minimum energy molecules need in order to react collision rate or number of collisions increases (with T) (any three bullet points) I I 	
	N.B. the first two bullet points could be read into two labelled Boltzmann distribution curves, showing E _a	[3] total 6

Question	Expected Answers	Marks
5 (a) (i)	the energy/enthalpy/heat required to break 1 mole of bonds or a bond per molecule in 1 mole N.B. do not allow "(energy needed to break the bonds in) 1 mole of compound"	[2]
(ii)	1/4CH₄(g)	
	If the above three marks cannot be awarded (this is more than likely!), allow the following:	
	Any equation with CH₄(g) on the left hand side Any equation showing the breaking of a CH bond, e.g. C + 4H or CH₃ + H on the right hand side	[3]
(b)	total BE on left = 2(C-C) + 8(C-H) + 5(O=O) = +6488 kJ total BE on right = 6(C=O) + 8(O-H) = +8542 kJ N.B. if neither of these two marks can be awarded, you could award [1] if all of	[3]
	the correct multipliers (2, 8, 5, 6, 8) have been used. △H = 6488-8542 = -2054 (kJ mol ⁻¹)	[0]
(c) (i)	either: average bond energies are not applicable to particular bonds or: ∆H _c is for H ₂ O(I), whereas bond energies are for gases ✓ N.B. ignore any ref. to changes in conditions/temperature etc.	[1]
(ii)	-4200 →	
	ΔH _c /kJ mol ⁻¹ -2200 3 4 5 6	
*	number of carbon atoms plotting of points and a straight line	[1]
(iii)	-3450 to -3550 (kJ mol ⁻¹) (ignore absence of sign, but do not allow +) √ (allow e.c.f correct interpretation of incorrect graph)	[1]
(iv)	Successive members/molecules/compounds/formulae increase by a regular/fixed/the same amount (of C and/or H) or by a CH₂ group ✓	[1] 12 max 11

Question	Expected Answers	Marks
6 (a)	 mention of two of the following as pollutants, or as products of combustion or as being present in exhaust gases: carbon monoxide, nitrogen monoxide, nitrogen dioxide, unburned hydrocarbons (ignore any ref. to sulphur compounds) heterogeneous (catalysis) (not heterolytic!) needs a high temperature (reactants) adsorbed onto the catalyst's surface weakly/temporarily bonded to the catalyst bonds in reactants are weakened (products easily) desorbed after reaction or lost/released from surface description of how one of the pollutants undergoes transformation into harmless products, e.g. CO + NO —————————————————————————————————	
(b)	 Indicate this mark as Q√ Haber process converts nitrogen/N₂ (from the air hence cheap and plentiful) into ammonia/NH₃ or in an (unbalance) equation 	[6]
	 ammonia is used as a refrigerant and to make fertilisers such as ammonia itself, ammonium sulphate or other ammonium salt or urea etc. which are needed for more crops/food),. and nitric acid, which is used to make explosives or a named N-containing explosive, polyamides/nylon, dyes etc. 	
	any 4 bullet points 🗸 🗸 🗸	[4] total 10