Centre No.					Pape	er Refei	rence			Surname	Initial(s)
Candidate No.			6	2	4	6	/	0	2	Signature	
	62 E	er Reference(s) 246/02 2dex Chemi	cel		GC	E					ner's use only

Unit Test 6B (Synoptic) Time: 1 hour 30 minutes

Advanced Level

Materials required for examination	Items included with question papers
Nil	Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Answer ALL the Questions in Section A in the spaces provided in this question paper. Answer TWO questions in Section B in the spaces provided in this question paper. Indicate which question you are answering by marking the box (\boxtimes) . If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new question with a cross (\boxtimes) .

You may use a calculator. Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 50. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. Any blank pages are indicated.

A Periodic Table is printed on the back page of this booklet.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. You will be assessed on your Quality of Written Communication in this paper.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

2

3

Turn over

SECTION A

Answer ALL parts of this question in the spaces provided.

- 1. Potassium is obtained from the mineral carnallite, KClMgCl2.xH2O, where x is the number of molecules of water of crystallisation.
 - (a) The value of x can be found by dissolving a known mass of carnallite in water, precipitating all the chloride ions as silver chloride, and weighing the precipitate.

A sample of pure carnallite of mass 5.55g was dissolved in water. An excess of aqueous silver nitrate in dilute nitric acid was added. The precipitate of silver chloride, AgCl, was filtered, washed and dried. It had a mass of 8.61g.

(i) Write the ionic equation, with state symbols, for the precipitation reaction forming silver chloride.

ii)	Explain why an excess of silver nitrate was used.	
		,
		(1)

(iii) Calculate the molar mass of carnallite and hence the number of molecules of water of crystallisation.

(6)

(1)

 (2)
(Total 10 marks)
TOTAL FOR SECTION A: 10 MARKS

Leave blank

SECTION B

Answer TWO questions from this section in the spaces provided. If you answer Question 2 put a cross in this box \square .

2. The structure of limonene [molar mass = 136 g mol^{-1}] is

which can be represented as

(a) (i) Limonene is a chiral molecule found in oil of orange and oil of lemon. Refer to its structure to explain why the molecule is chiral.

(2)

4

Leave
Lcavc
blank

(ii)	Some rea	ctions and	d extract	ion pr	ocesses	can des	troy tl	he optic	cal activi	ity of	the
	product.										
	Give the	mechanis	sm for t	he fol	lowing	reaction	n and	hence	explain	why	the

Give the mechanism for the following reaction and hence explain why the reaction, if performed on a single optical isomer, would produce a mixture that was no longer optically active.

CH_3		CH_3
CH ₃ CH ₂ —C—Br +	OH⁻	CH ₂ —C—OH + Br
CH ₂ CH ₂ CH ₃		CH ₂ CH ₂ CH ₃

(7)

(b) Limonene can undergo the following conversions.

(i) Explain whether or not compound **A** and pulegone could be distinguished by simple chemical test tube reactions.

(ii) Explain whether or not compound **A** and pulegone could be distinguished using proton N.M.R. spectroscopy. You are not expected to say what the spectra might look like.

.....

(2)

6

	(2)
(c) (i)	In the reduction of limonene to menthane using hydrogen and a platinum catalyst, 0.68g limonene reacted with 240cm³ of hydrogen. Show that this is consistent with the given structure of limonene. [Molar volume of a gas at the temperature and pressure of the experiment is 24dm³.]
	(3)
(ii)	If compound A were reacted with lithium aluminium hydride in dry ether, explain whether or not menthol would be the product.
	(2)
	(Total 20 marks)

Turn over

If you answer Question 3 put a cross in this box \square .

- **3.** Ozone is important not only for its protective effects from ultraviolet radiation in the stratosphere, but also for water and sewage treatment. It is usually produced as a mixture with oxygen called ozonised oxygen.
 - (a) The amount of ozone in ozonised oxygen can be determined by using the ozone to oxidise iodide ions and titrating the liberated iodine in excess potassium iodide with standard sodium thiosulphate solution:

$$O_3 + 2I^- + H_2O \rightarrow O_2 + I_2 + 2OH^-$$

 $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

 $10\,\mathrm{dm^3}$ of ozonised oxygen was shaken repeatedly with a solution of potassium iodide. The liberated iodine required $40.0\,\mathrm{cm^3}$ of $1.00\,\mathrm{mol}\,\mathrm{dm^{-3}}$ sodium thiosulphate solution for reduction.

What was the percentage by volume of ozone in the ozonised oxygen? [The molar volume of ozone at the temperature and pressure of the experiment is 24 dm³].

(5)

Leave blank

(b) Ozone can decompose to oxygo	en
----------------------------------	----

$$2O_3 \rightarrow 3O_2$$
 $\Delta H = -246 \text{ kJ}$

(i)	The reaction is slow in the absence of a catalyst. Use this fact and information from the equation to explain the difference between thermodynamic and kinetic stability.
	(4)

(ii) Sketch a Maxwell-Boltzmann distribution of molecular energies for a gas and use it to explain how a catalyst increases the rate of a gas-phase reaction at a given temperature.

(5)

(c) The alkene C_4H_8 has several isomers. Ozone can be used to distinguish these since it reacts with C = C bonds to give a mixture of carbonyl compounds, which are easily identifiable:

A particular sample of C₄H₈ gave the following results:

$$C_4H_8 \longrightarrow C_3H_6O + CH_2O$$
A

 ${\bf A}$ does not react with iodine and sodium hydroxide but does with ammoniacal silver nitrate solution. Use this information to deduce the structure of C_4H_8 .

(6)

Q3

(Total 20 marks)

Leave blank

If you answer Question 4 put a cross in this box \square .

l .	(a)	whi Bau this	iminium extraction requires the production of pure aluminium oxide from bauxite, ich is a mixture containing aluminium oxide, iron(III) oxide and silicon dioxide. exite is crushed finely and treated with 10% aqueous sodium hydroxide solution; gives a solution containing only sodium aluminate. An older process used much re concentrated sodium hydroxide solution, but this is now no longer used.
		(i)	State the acid-base characteristics of each of the oxides in bauxite.
			(3)
		(ii)	Write an equation for the formation of sodium aluminate from aluminium oxide and sodium hydroxide.
			(2)
		(iii)	The use of the more concentrated sodium hydroxide solution gave a final solution that was less pure than that found with the modern process. Suggest why this is so.
			(2)

(b)	(i)	Draw the structure of anhydrous aluminium chloride [molar mass = 267 g mol^{-1}]		
(0)	(-)	so as to show the shape of its molecules and the bonding present.		
		(3)		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)			
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)			
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		
	(ii)	Explain why an aqueous solution of aluminium chloride is acidic.		

(c) Thallium, Tl, is the element with the largest atomic number in Group 3. Thallium is known to form compounds in which it has oxidation states of +1 and +3.

Two structures have been proposed for the compound TlI₃:

- thallium in oxidation state +3 combined with three I⁻ ions
- thallium in oxidation state +1 combined with the I_3 ion.

The I₃⁻ ion dissociates according to the equilibrium

$$I_3^- \rightleftharpoons I_2 + I^-$$

(i)	Explain the term oxidation state .	
	(1

(ii) In a determination of the structure of TII_3 , 0.585 g of the compound gave 0.235 g of silver iodide after suitable treatment with silver nitrate solution. Show that the oxidation state of thallium in TII_3 is +1.

(4)

	Leave blank
(iii) In the presence of a large excess of iodide ions TlI ₃ reacts to form [TlI ₄] ⁻ , which is a complex of Tl +3:	
$TlI_3 + I^- \rightarrow [TlI_4]^-$	
What is the oxidising agent in this reaction? Give reasons for your choice.	
(2)	Q4
(Total 20 marks)	
TOTAL FOR SECTION B: 40 MARKS TOTAL FOR PAPER: 50 MARKS	
END	

			7	
0	$\begin{array}{c} {}^{4} \\ {}^{He}\\ {}^{He}\\ {}^{lium}\\ {}^{2}\\ {}^{20}\\ {}^{Neon}\\ {}^{10}\\ {}^{10}\\ {}^{40}\\ {}^{40}\\ {}^{Ar}\\ {}^{Argon}\\ \end{array}$		8	
7	Pluorine 9 9 35.5 CI Chlorine	17 80 80 80 Bromine 35 127 127 I lodine 53 210 At Astatine 86		Lawrencium 103
9	16 O Oxygen 8 8 8 Sulphur Sulphur	Seenium 34 128 Te Tellurium 52 210 Polonium	Yb Vtterbium 70 (254)	Nobelium 102
w	Nitrogen 7 31 Phosphorus	AS Arsenic 33 1122 Sb Antimony 51 209 Bi Bismuth	169 Thulium 69 (256)	Mendelevium 101
4	C Carbon 6 6 8 Si Silicon 1	1 = 1	167 Er Erbium 68 (253)	Fermium 100
m	B Boron 5 77 AI Aluminium	13 70 70 Ga Gallium 31 115 In Indium 49 204 Thallium	165 Holmium 67 (254)	Einsteinium
		Cd Cadmium 48 Mercury	163 Dy Dysprosium 66	Californium 198
		63.5 C Cu Copper 29 108 A A g 47 197 A U	159 Tb Tebium 165 65 (245)	Berkelium C
ra .		Nickel 28 28 106 Palladium 46 195 Phatinum		Curium 8
PERIODIC TABLE Group		29 CO Cobalt 27 103 Rhh P 45 192 Iridium P Iri	152 Eu Europium G 63	Americium
RIODIC 1 Group	Key u' mass g mol' Symbol Name omic number	56 Fe Iron 26 26 26 101 Ruthenium F 44 190 Os Osmium Osmium	Samarium F 62 (242)	Pu Plutonium A
PERIO	Key Molar mass g mol¹ Symbol Name Atomic number	Mn Manganese 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	1 5 1 1	Neptunium P
THE		52 Cr Cr 24 24 96 Mo Mobdenum Ter 42 42 W W	Nd odymium Pre 60	Uranium N
		Note Note	Pr Nd Pascodymium Neodymium P 60 60 (231) 238	Pa Protactinium L 91
		48 Ti Titanium Va 22 91 Sirconium Ni 178 Haftnium Ta 7	Certium Pras 58	Thorium Pro
		Scandium Tir 21	227 Actinium 899	F
7	$\begin{array}{c} 9 \\ Be \\ Beryllium \\ 4 \\ Mg \\ Magnesium \end{array}$	12	Radium Act	
—	Hydrogen T Li Bery 3 23 Na Na Na Sodium Magg	11	 	
iod				
Period	3 2	4 v 0	7	

