Mark Scheme for Specimen Paper 6241

1	(a)	(i)	2s ² 2p ⁶ 3s ² 3p ⁴ (1)	[1]
	(b)	(ii) (i)	Protons = 16 (1) Neutron = 18(1) • Energy change when 1 mole(1) • Of gaseous atoms(1)	[2]
			Gains 1 electron per atom(1)	[3]
		(ii)	 Electron and anion both negative(1) Repulsion occurs(1) 	[2] Total 8 marks
2.	(a)	(i)	electron configuration or 3d ⁶ 4s ² or 4s ²	[1]
		(ii)	or number of outer electrons (1) atoms of the same element (1) that have different numbers of neutrons(1)	111
			or atoms with the same number of protons (1) but different numbers of neutrons(1)	[2]
·	(b)	(i)	A ionisation (not vaporisation)(1)	
			B acceleration(1) C deflection(1) D detection(1)	[4]
		(ii)	$(5.80 \times 54) + (91.6 \times 56) + (2.20 \times 57) + (0.40 \times 58)$ (1)
			100 = 55.91 (1)	[2]
				Total 9 marks
3	(a)	(i)	Mol of Ca used = $0.17/40$ (1) - 4.25×10^3	Total 9 marks
3	(a)	(i)	Mol of Ca used = $0.17/40$ (1) = 4.25×10^3 Volume of hydrogen produced = $4.25 \times 10^3 \times 24000$ = 102 cm^3 (1)	Total 9 marks
3	(a)	(i) (ii)	= 4.25×10^{-3} Volume of hydrogen produced = $4.25 \times 10^{-3} \times 24000$	
3	(a) (b)	(ii)	= 4.25×10^{-3} Volume of hydrogen produced = $4.25 \times 10^{-3} \times 24000$ = 102 cm^3 (1) $4.25 \times 10^{-3} \times 6.0 \times 10^{23}$ molecules	[2]
3		(ii)	= 4.25×10^{-3} Volume of hydrogen produced = $4.25 \times 10^{-3} \times 24000$ = 102 cm^3 (1) $4.25 \times 10^{-3} \times 6.0 \times 10^{23}$ molecules = 2.55×10^{21} (1)	[2] [1]
3	(b)	(ii)	 = 4.25 x 10⁻³ Volume of hydrogen produced = 4.25 x 10⁻³ x 24000 = 102 cm³ (1) 4.25 x 10⁻³ x 6.0 x 10²³ molecules = 2.55 x 10²¹ (1) Increases as group is descended(1) Ca_(g) → Ca_(g) + e⁻¹ 1 mark for formulae and charges 1 mark for state symbols Decreases as group is descended(1) Because although there is an increase in nuclear 	[2] [1] [1]
3	(b)	(ii)	 = 4.25 x 10⁻³ Volume of hydrogen produced = 4.25 x 10⁻³ x 24000 = 102 cm³ (1) 4.25 x 10⁻³ x 6.0 x 10²³ molecules = 2.55 x 10²¹ (1) Increases as group is descended(1) Ca_(g) → Ca_(g) + e⁻¹ 1 mark for formulae and charges 1 mark for state symbols Decreases as group is descended(1) 	[2] [1] [1]

4	(a)		CI:	
			B+CI	
			(1)	
			Must show all the outer electrons around the chlorine	
			Do not have to be • and + (1)	[2]
	(b)	(i)	CICI	
			B (1) Cl	[1]
		(ii)	The (three) bonding (electron) pairs (1) repel as far apart as possible / position of minimum repulsion (1)	[2]
	(c)	(i)	Power (of an atom) to attract (the pair of) electrons	
			(1) in a covalent bond / bonding pair (1) n.b. could answer question by comparing the electronegativities of the B and Cl	[2]
		(ii)	Bonds arranged symmetrically / molecule symmetrical / bond polarities directional / are vectors (1) Bond polarities cancel (1) Could be shown as a diagram	[2]
				Total 8 marks
5	(a)	(i)	H_2SO_4 : +6 / VI (1) H_2S : -2 (1) SO_2 : +4 / IV (1)	[3]
		(ii)	lodide has greater reducing power (1) reduces sulphur by more oxidation numbers / or correctly uses their numbers from part (i) / or an 'electron gain' type argument (1)	[2]
	(b)	(i)	$2Cl^{-} \rightarrow Cl_{2} + 2e^{-} \text{ or } Cl^{-} \rightarrow \frac{1}{2}Cl_{2} + e^{-}$	
		(ii)	or $2Cl' - 2e' \rightarrow Cl_2$ (1) $OCl' + 2H^+ + 2e' \rightarrow Cl' + H_2O$ (2) Or $OCl' + 2H^+ \rightarrow Cl' + H_2O - 2e'$ all species 1 mark, balancing 1 mark	[1]
		(iii)	OCl' + 2H* + Cl' \rightarrow Cl ₂ + H ₂ O (1) State symbols (1)	[2] Total 10 marks

				Paper total 6
		(ii)	Ions (free to) move / mobile (in liquid state) (1)	[1] Total 15 marks
	(c)	(i)	Delocalised or sea of electrons between layers(1) Which can flow/move (1)	[2]
		(ii)	Structure – lattice / giant ionic / cubic (allow face centred cubic) (1) Bonding - Ionic (1) Diagram – lattice of alternate clearly identified / Na†and Cl ions, must imply 3-D. (1)	[3]
	(b)	(i)	Structure - giant or macro + atomic / molecular/ covalent (1) Bonding - covalent (1) (ignore reference to vdW) Diagram - layers (1) of flat hexagons (1) (min of 2 hexagons correctly joined for the 'hexagon' mark)	[4]
		(ii)	Both held by van der Waals forces that depends on the number of electrons (1) P_4 has less than S_8 hence S_8 has a higher melting temperature. (1)	[2]
6	(a)	(i)	Sodium has one outer electron that is delocalised into a sea of electrons others have more (1). Na* smallest charge/ ion comparison of the charges on the three ions (1) Therefore weaker attraction between sodium cation and delocalised electrons hence lower melting temperature (1)	[3]

Mark Scheme for Specimen Paper 6242

1	(a)	(i)	any two from concentration pressure	
			surface area / particle size (2 x 1)	[1]
		(ii)	Pressure/ concentration: Increase of pressure / concentration increases rate (1) The particles are closer together therefore more collisions / more collisions per unit volume per unit of time (1) Allow more 'frequent' collision Or Surface area:	
			Increase in surface area increase the rate (1) More collisions on surface of solid /more surface available for collisions (1)	[2]
	(b)	(i)	Similar curve with peak further to the right (1) and lower maximum(1) Max 1 mark if second line crosses the first more than once or crosses axis	[2]
		(ii)	vertical line placed to the right of both of the peaks (1)	[1]
		(iii)	(At higher temperature average kinetic) energy of molecules is greater (1) More molecules / collisions have energy greater than / equal to the activation energy (1)	
			more collisions are effective/ result in reactions (1)	[3]
			Total marks	9
2	(a)		Mr 2-bromobutane = 137 (1) moles = 13.7/137 = 0.10 (1) allow 0.1	
			moles KOH = 9.0/56 = 0.16 (0.1607 or 0.161) (1) KOH present in excess consequential (1)	[4]
	(b)		lone pair donor / electron pair donor / lone or electron pair can form co-ordinate / dative bond (1) hydroxide ion / OH' (1)	2
	(c)		rate increased (1) C-l bond weaker (than C-Br bond) / lower bond energy (1)	2
			Total marks	8

3	(a)		Dynamic: reaction occurring in both directions / rate of forward reaction and reverse reactions equal (1)		
			Equilibrium: constant concentrations / no change in macroscopic properties(1)	[2]	
	(b)	(i)	Higher yield of ammonia / (equilibrium position) moves to. r.h.s (1) Fewer product molecules (1)	[2]	
		(ii)	Lower yield of ammonia / (equilibrium position) moves to l.h.s.(1) since this absorbs heat/ shift in endothermic direction / the reaction is exothermic(1)	[2]	
	(c)	(i) (ii)	350 - 500°C / 623 - 773K (1) High temp favours high rate (1) Low temp favours good yield (1) Temperature used of 350-500°C compromise / balance between yield and rate (1) consequential on first two points correct	[1] [3]	
	(d)	(i)	Iron (not Fe) (1) ignore references to oxides	[1]	
		(ii)	Provides alternative pathway_/ route		
			or Explanation of what happens at the surface(1) of lower activation energy (1) Second mark consequential on the first	[2]	
			Total marks	13	
4	(a)	(i)	HBr (name or formula) (1) gas phase or inert / organic solvent (1)	[2]	
		(ii)	H H H HCCH I I I H Br H		
			Or CH ₃ CHBrCH ₃ (1)	[1]	
	(b)	(i)	H H H H-C-C-C-H H OHH		
			Or CH ₃ CH(OH)CH ₃ (1) This mark is not consequential on (a)(ii) i.e. this is the only acceptable answer	[1]	

		(ii)	electrophilic(1) addition (1) nucleophilic (1) substitution/ hydrolysis (1) All marks stand alone in this part of the question	[4]
	(c)	(i)	Concentrated sulphuric acid / phosphoric acid / aluminium oxide (1) Heat/ 170°C for sulphuric acid / 70 °C for phosphoric acid (1)	[2]
	(d)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[1]
			Total marks	11
5	(a)		Group of compounds with the same general formula(1) that differ by -CH ₂ - (1) Same or similar chemical properties / same functional group(1)	[3]
	(b)	(i)	C H 3 H -C - C H H	
			At least one repeat unit and evidence of extension of chain (1)	[1]
	(c)		Different chain lengths / areas of crystalline and amorphous structure (1)	[1]
	(d)	(i)	C-F bond strong/ high bond enthalpy/ bond not easily broken/ steric hindrance by fluorines around carbon(1)	[1]
		(ii)	Non-stick coatings e.g. in saucepans, in pipes, on skis, stain-proofing of fabrics, waterproof clothing. (1)	[1]
	(e)		Only single/ sigma bonds in ethane (1) Allow saturated as an alternative to 'only', but types of bonds must also be mentioned Ethene also has π bond (1) π bond weaker (and breaks) / electrons in π bond more accessible (1)	[3]

Enthalpy or heat change per mole (1) 6 (a) For complete combustion (1) At 1atm pressure and specified temperature (1) [3] (b) (i) Bonds broken: 5C-H+C-O+O-H+3O=O=+4371 (1) Bonds made: 4C=O + 6O-H = -5750 (1) $\Delta H = +4371-5750 = -1379 \text{ kJ mol}^{-1}$ (1) [3] Exothermic (1) (ii) (c) [3] Energy barrier (1) Fully labelled (1)

Total marks 9

Total for Paper 60

Mark Scheme for Specimen Paper 6243.02

1	(a)	(i)	Potassiur not K	n / K ⁺ (1)	[1]
		(ii)	oxygen / KNO₃ / K0 Do not a	ClO ₃ / KO ₂ (1)	[2]
	hydrogen (ii) barium su			ioxide / CO ₂ (1) n / H ⁺ / H ₃ O ⁺ (1)	[2]
				ulphate / BaSO ₄ (1) : acid / H ₂ SO ₄ (1)	[2]
	(c)			orange / brown <i>(not red alone)</i> (1) rless / decolourised (1)	
	litmus tu		litmus tu	umes / steamy vapour / misty fumes (1) rns red (1) if candidates then go on to say the litmus is d score zero for litmus test	
			orange (1) to green (1)	[6]
				Total mark	(s 13
2	(a)	ca. fo	se to max	k for improvement 1 mark for related reason in each 4 marks. Reason must relate to improvement. Max is ement Max 2 for reason. Insulate beaker/polystyrene cup/plastic cup/use lid (1	2
2	lm	ca. fo	se to ma) r improve	k 4 marks. Reason must relate to improvement. Max ? Ement Max 2 for reason.	2
2	Im Re	ca. fo iprov ason	se to ma) r improve	4 marks. Reason must relate to improvement. Max is a memory may 2 for reason. Insulate beaker/polystyrene cup/plastic cup/use lid (1)	2
2	lm Re	ca. fo iprov ason	se to ma) r improve rement rement	4 marks. Reason must relate to improvement. Max is a sement Max 2 for reason. Insulate beaker/polystyrene cup/plastic cup/use lid (1) Prevents/ reduces heat loss or absorbs less heat (1)	2
2	Im Re Im	ca. fo iprov ason iprov	se to ma) r improve rement rement	4 marks. Reason must relate to improvement. Max is a sement Max 2 for reason. Insulate beaker/polystyrene cup/plastic cup/use lid (1) Prevents/ reduces heat loss or absorbs less heat (1) Use pipette/ burette (1)	2)
2	Im Re Im Re	ca. fo iprov ason iprov	se to ma) r improve rement rement rement	* 4 marks. Reason must relate to improvement. Max 2 ement Max 2 for reason. Insulate beaker/polystyrene cup/plastic cup/use lid (1 Prevents/ reduces heat loss or absorbs less heat (1) Use pipette/ burette (1) More accurate (than measuring cylinder) (1) Measure temperature for several minutes before the	2)
2	Im Re Im Re	ca. fo iprovesson ason iprovesson	se to ma) r improve rement rement rement	* 4 marks. Reason must relate to improvement. Max 2 ment Max 2 for reason. Insulate beaker/polystyrene cup/plastic cup/use lid (1 Prevents/ reduces heat loss or absorbs less heat (1) Use pipette/ burette (1) More accurate (than measuring cylinder) (1) Measure temperature for several minutes before the addition (1) Allows more accurate value for the initial	2)

Improvement		ement	Read thermometer to 1dp /use more precise thermometer/digital thermometer (1)	
Reason			Gives more accurate temperature change (1)	
Improvement			Stir mixture(1)	
Reason			Ensure even temperature/reaction faster less heat loss with time(1)	
In	nprov	ement	Use finely divided iron/smaller pieces (1)	
Re	eason		Reaction faster less heat loss with time (1) not speeds up alone	F 4 1
				[4]
(b		lgnore <i>workii</i>		[2]
	(ii)	No of	mols of copper sulphate = 50.0 x 0.500 / 1000 = 0.025 (1)	1
	(iii)	negati <i>consec</i>	py change per mol = 3.18/.025 = -127kJ(1) ve sign (1)stand alone quential on (i) and (ii) sig fig and answer must be in kJ mol' even if units ed.	2
			Total marks	9
(a)		diagram diagram	- 10 10 1 2 2 3 11 2 3 11 12 11 11 11	[2]
(b)	(i)	reaction	is slow / time needed for reaction to reach completion (1)	[1]
	(ii)	liquid ar (it allow escape o	es vapours and returns liquid to flask / vapour turns to nd returns to flask(1) s reaction at boiling point of reactants) without loss / of material/reactants s loss/escape of materials/reactants/products (1)	[2]
(c)		collect o produce Need to	e mixture (slowly) (1) only fraction/distillate (1) d at 102 °C / around 102 °C / between 100 -104 °C (1) make clear that only distillate at this temperature is d e.g. rest discarded for second mark	[3]
(4)	(i)	31(1)	100 = 43.1% (1) Allow 2-4 significant figures	

		7.2		[2]
		side r reacti	easons from: eactions (1) ion incomplete (1) uct lost in purification / transfers (1)	max [2]
	(b)	(i) AgBr ((1)	[1]
		(ii) CH₄H₃B	$r + H_2O \rightarrow C_4H_9OH + H^+ Br^-$	
		CH₃CH₂	$CH_2CH_2Br + H_2O \rightarrow CH_3CH_2CH_2CH_2OH + H^++Br^-$ $OH^- + Br^-$ (1)	[1]
÷		the re	on very slow at room temperature / heat speeds up action /increases rate / flammable (1)	[1]
		ро по	t allow constant temp. Total	marks 15
4	(a)		= $0.00258 / 2.58 \times 10^{-3} / 0.0026 / 0.002577$ (1)	[1]
		97 (ii) 0.002	58 I same number of moles as calculated in (i) (1)	
		0.002	58 x $\frac{1000}{200}$ (1) = 0.110 (mol dm ⁻³) (1) units not required	
		conse	23.45 equential on (i)	[3]
	(b)		<u>01 x 100</u> = 8% (1) .25	[1]
(c)	w	Weighing	must be evidence of two weightings at some point in the process (1)	
	P	Preparation	Rinsing out one piece of relevant apparatus correctly (1)	
	D	Dissolve	Dissolve in water in beaker / volumetric flask (1)	. e
	R	Rinse	rinse funnel (if solid straight to volumetric flask) (1)	VI a X
	V	Volumetric flask	Volumetric / standard / graduated flask (1) DO NOT AWARD IF CANDIDATE USES VOLUMETRIC FLASK TO MEASURE OUT 250 cm³	5 m a
	M	250 cm³		S
	S	Shake	Shake / invert / mix final solution (1) n.b. this is at end	

- concentration = $\frac{\text{mass of sulphamic acid}}{97 \text{ (or Mr)}}$ x $\frac{1000}{250}$ (1)
- H Safety (solution of) acid is corrosive wear gloves (1)

8 Total marks 13

PAPER TOTAL 50 MARKS