\smile												
Centre No.				Pape	er Refe	rence			Surname		Initia	l(s)
Candidate No.		6	2	4	6	/	0	2	Signature			
	Paper Reference(s) 6246/02)								Exam	iner's us	e only
	Edex		6		F.							
	Luca									Team L	eader's u	se only
	Chemi	stry	•							<u></u>		-
	Advand	ced									Question Number	Leave Blank
	Unit Te	st 6E	3 (S	ync	pti	c)					1	
2227	Thursda	y 19.	June	e 20	08 -	- M	orni	ing			2	
25 25	Time: 1	hour	30 ı	nin	utes						3	
											4	
£1												
	Materials requ	iired for	exami	nation	$\frac{\mathbf{It}}{\mathbf{N}}$		cluded	with	question papers			
	Candidates ma	ay use a (calcula	tor.	11.	•						
										•		
Instructions to				: 4-4-					::t:-1(-)1			
signature.	e, write your centre											
	we the correct quest in the spaces prov						is sho	wn al	oove.			
Answer TWO que	estions in Section I	3 in the	spaces	provi	ded in	this q						
	nswering by marking box () and then								bout a question, p	ut		
Do not use pencil.	Use blue or black s in any calculation	ink.										and the second
snow all the step	s in any calculation	ns anu	state t	ne un	113.							E CASA
Information for												
	this paper is 50. Trackets: e.g. (2). The											
	s printed on the bac	ck cover	of this	s ques	tion p	aper.						
Advice to Candi	idates											
You are reminded	of the importance on your Quality of V	of clear	Englis	h and	carefu	l prese	entatio	on in y	our answers. You	1		
will be assessed of	ii your Quality of V	viittell C	OHIHU	micall	OH III	шь ра	per.					

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

 $\stackrel{\text{Printer's Log. No.}}{N31831A}$

W850/R6246/57570 7/7/7/3/13,700

Turn over

Total

SECTION A

Answer ALL parts of this question in the spaces provided.

1. The enthalpy change for some reactions cannot be determined directly.

One such reaction is the thermal decomposition of potassium hydrogenearbonate, which in a closed system at 200 °C is an equilibrium reaction.

$$2KHCO_3 \rightleftharpoons K_2CO_3 + H_2O + CO_2$$

However, by determining the enthalpy change for the neutralisation of the two potassium salts with hydrochloric acid, ΔH for the reaction above can be found. The equations for the neutralisation reactions are:

$$K_2CO_3 + 2HC1 \rightarrow 2KC1 + H_2O + CO_2$$
 ΔH_1

$$KHCO_3 + HC1 \rightarrow KC1 + H_2O + CO_2$$
 ΔH_2

 ΔH_1 and ΔH_2 for the neutralisation reactions were determined as follows:

- 30 cm³ of 2 mol dm⁻³ hydrochloric acid (an excess) was placed in a polystyrene cup, and its temperature measured to the nearest 0.1 °C.
- A weighed quantity of the potassium salt (either the carbonate or the hydrogencarbonate) was added to the acid with rapid stirring, and the temperature measured again when the reaction was complete.

For the neutralisation using potassium carbonate, the results were as follows:

Amount of potassium carbonate used = 0.0187 mol

Initial temperature = 23.7 °C

Final temperature $= 30.1 \,^{\circ}\text{C}$

(a) Stat	e Hess	's Law
----------	--------	--------

(1)

Leave blank

(b) Use the data for the neutralisation of potassium carbonate to calculate the value of ΔH_1 to **two** significant figures. Remember to include a sign and units in your answer.

[Assume that the heat capacity of the solution is $4.18\,\mathrm{J\,g^{-1\,\circ}C^{-1}}$, and that it has a mass of 30 g.]

(3)

(c) (i) Show how the two equations for the neutralisation reactions and their ΔH values can be combined to find a value of ΔH for the thermal decomposition of potassium hydrogenearbonate.

Calculate this enthalpy change using your value for ΔH_1 from part (b), given that $\Delta H_2 = +29.3 \text{ kJ mol}^{-1}$.

(3)

(ii) Explain why you would need to include the enthalpy of vaporisation of H ₂ order to obtain an accurate value of the enthalpy of decomposition of pohydrogencarbonate.	
$2KHCO_3(s) \rightleftharpoons K_2CO_3(s) + H_2O(g) + CO_2(g)$	
	•••••
	(1)
d) State and explain the effect of a decrease in temperature on the value equilibrium constant for the decomposition reaction and hence on the composition requilibrium mixture.	
equilibrium constant for the decomposition reaction and hence on the composition	
equilibrium constant for the decomposition reaction and hence on the composition	
equilibrium constant for the decomposition reaction and hence on the composition	
equilibrium constant for the decomposition reaction and hence on the composition	
equilibrium constant for the decomposition reaction and hence on the composition	
equilibrium constant for the decomposition reaction and hence on the composition	
equilibrium constant for the decomposition reaction and hence on the composition	(2)

Leave blank

SECTION B

Answer any TWO questions from this section in the spaces provided.

If you answer Question 2 put a cross in this box .

2. (a) (i) Propanoic acid, CH₃CH₂COOH, can be made from ethene via a Grignard reagent.

Draw the reaction scheme. For each step give the reagents and include the formula of the Grignard reagent.

.....

(5)

(2)

(ii) What type of reagent is a Grignard reagent? Justify your answer by reference to

the reaction used in part (i).

(b)	Este	ers can be made either from carboxylic acids or from acid chlorides.
	(i)	Give in each case the equation for the reaction between:
		ethanol and propanoyl chloride
		(1) ethanol and propanoic acid.
	(ii)	Explain which method gives the better yield of ester.
		(1)
(c)		nixture of aqueous propanoic acid and sodium propanoate forms a buffer ation.
	(i)	What is a buffer solution?
		(2)

(ii) Calculate the mass of sodium propanoate that needs to be added to 125 cm³ of a 0.10 mol dm⁻³ solution of propanoic acid at 25 °C, to give a buffer solution of pH 5.06.

[The value of K_a for propanoic acid at 25 °C is 1.30×10^{-5} mol dm⁻³; molar mass of sodium propanoate is 96 g mol⁻¹]

(4)

(iii) Calculate the concentration of hydroxide ions in the buffer solution in part (ii).

[The value of $K_{\rm w}$ at 25 °C is 1.0×10^{-14} mol² dm⁻⁶]

(2)

QUESTION 2 CONTINUES ON THE NEXT PAGE

(iv) Why is a solution of propanoic acid alone not a buffer?	Leave blank
	02
(2) (Total 20 marks)	Q2
(Total 20 marks)	
	Government for the state of the
	STEED THE STEED OF
	A DESCRIPTION OF THE PROPERTY

		If you answer Question 3 put a cross in this box .
3.	(a) (i)	Draw the shape of a water molecule. Justify your answer.
		(2)
	(ii)	Water has intermolecular hydrogen bonds, but hydrogen sulphide, H ₂ S, does not.
		Explain how these arise in water and why they do not occur in hydrogen sulphide.
		Give ONE resulting difference in physical properties of water and hydrogen sulphide.
		(3)

Leave	
blank	

(b)	Copper(II ions and a) sulphate pentahydrate crystals, CuSO ₄ .5H ₂ O, contain hydrated copper(II) are blue.
	If heated	strongly they turn white and steam is evolved.
		te solid is cooled to room temperature and water is added the solid turns blue it gets very hot.
	(i) Expla	ain why the product is white.
	,	
		(3)
		in, in terms of bonding, why the anhydrous solid gets hot when water is it to it.
		(2)
(c)	Explain w down the	thy the solubility in water of the hydroxides of Group 2 (Be to Ba) increases group.
	••••••	
	•••••	(3)

If you answer Question 4 put a cross in this box .

- **4.** (a) The conversion of butan-2-ol to 2-bromobutane can be performed as outlined below:
 - Butan-2-ol is heated with a mixture of 50 % aqueous sulphuric acid and sodium bromide for 45 minutes.
 - The crude 2-bromobutane is distilled off.
 - The crude 2-bromobutane is shaken with pure water, which removes the sulphuric acid and some of the butan-2-ol that contaminates the product.
 - The organic layer is separated and then shaken with concentrated hydrochloric acid to remove residual butan-2-ol.
 - The organic layer is then shaken with dilute sodium carbonate solution.
 - Anhydrous calcium chloride is added to the organic layer and allowed to stand for some hours.
 - The organic layer is then redistilled in a dry apparatus.

(1)	Explain, in terms of kinetic factors, why the mixture is heated for a significant amount of time.
	(1)
(ii)	Why is sulphuric acid necessary in the reaction mixture?
	(2)
(iii)	Suggest why butan-2-ol, which is only partially miscible with water, is much more soluble in concentrated hydrochloric acid.
	(2)

(iv)	Why is the organic layer shaken with dilute sodium carbonate solution?	
		 (1)
(v)	What is the purpose of the anhydrous calcium chloride?	()
		(1)
(vi)	How would you heat the mixture safely? Explain your choice of method.	
		•••••
		(2)

QUESTION 4 CONTINUES ON THE NEXT PAGE

(b) Both 2-bromobutane and butan-2-ol are chiral molecules.

If one optical isomer of 2-bromobutane is used to make butan-2-ol by reaction with aqueous hydroxide ions, the product mixture is **not** optically active.

The mechanism for the reaction is either S_N1 or S_N2 ; these are given below

 S_N1

$$CH_2CH_3$$
 $H_3C \xrightarrow{\oplus} C$
 $H_3C \xrightarrow{\oplus} C$
 $H_3C \xrightarrow{\oplus} C$
 $H_3C \xrightarrow{\oplus} C$
 H

 S_N2

HO:
$$CH_2CH_3$$
 H_3C
 CH_2CH_3
 H_3C
 H_3

Leave
blank

	(3)
,	e oxidation of butan-2-ol with hot potassium dichromate(VI) in acidic solution duces butanone, CH ₃ COCH ₂ CH ₃ .
(i)	What would you see as the reaction proceeds?
(ii)	
	The dichromate(VI) ion is reduced under these conditions to chromium(III) ions.
	ions.
	ions. The half-equation for the oxidation of butan-2-ol to butanone is
	ions. The half-equation for the oxidation of butan-2-ol to butanone is $CH_3CH(OH)CH_2CH_3 \ \rightarrow \ CH_3COCH_2CH_3 \ + \ 2H^+ \ + \ 2e^-$ Write the ionic half-equation for the reduction of dichromate(VI) ions, and hence
	ions. The half-equation for the oxidation of butan-2-ol to butanone is $CH_3CH(OH)CH_2CH_3 \ \rightarrow \ CH_3COCH_2CH_3 \ + \ 2H^+ \ + \ 2e^-$ Write the ionic half-equation for the reduction of dichromate(VI) ions, and hence
	ions. The half-equation for the oxidation of butan-2-ol to butanone is $CH_3CH(OH)CH_2CH_3 \ \rightarrow \ CH_3COCH_2CH_3 \ + \ 2H^+ \ + \ 2e^-$ Write the ionic half-equation for the reduction of dichromate(VI) ions, and hence
	ions. The half-equation for the oxidation of butan-2-ol to butanone is $CH_3CH(OH)CH_2CH_3 \ \rightarrow \ CH_3COCH_2CH_3 \ + \ 2H^+ \ + \ 2e^-$ Write the ionic half-equation for the reduction of dichromate(VI) ions, and hence
	ions. The half-equation for the oxidation of butan-2-ol to butanone is CH ₃ CH(OH)CH ₂ CH ₃ → CH ₃ COCH ₂ CH ₃ + 2H ⁺ + 2e ⁻ Write the ionic half-equation for the reduction of dichromate(VI) ions, and hence derive the overall equation for the oxidation of butan-2-ol.

(iii) The IR spectra of butan-2-ol and of the organic product from its oxidation with dichromate(VI) ions are given below.

Spectrum of butan-2-ol

Spectrum of the organic product from the oxidation of butan-2-ol

Bond	Wavenumber/cm ⁻¹	Bond	Wavenumber/cm ⁻¹				
C—H (alkanes)	2850–3000	C—O (alcohols, esters)	1000–1300				
C—H (alkenes)	3000–3100	O—H (hydrogen- bonded alcohols)	3230–3550				
C=O (aldehydes, ketones, carboxylic acids)	1680–1750	O—H (hydrogen- bonded carboxylic acids)	2500–3300				

	What evidence is there from the spectra that the reaction in part (ii) has occurred?	;
	(2))
	hen potassium dichromate(VI) is dissolved in water, the following equilibrium is up	}
	$Cr_2O_7^{2-}(aq) + H_2O(1) \rightleftharpoons 2CrO_4^{2-}(aq) + 2H^+(aq)$	
(If a solution of barium ions is then added to this solution , solid barium chromate, BaCrO ₄ , is precipitated; it is sparingly soluble in water, so the equilibrium given below also exists in the solution	
	$Ba^{2+}(aq) + CrO_4^{2-}(aq) \rightleftharpoons BaCrO_4(s)$	
	Explain what happens to the pH when the barium ions are added.	
	(2))

QUESTION 4 CONTINUES ON THE NEXT PAGE

_	
Leave blank	(ii) If a solution of lead(II) ions is added instead of barium ions, solid PbCrO ₄ is precipitated. This is almost completely insoluble in water so all chromate(VI) ions are removed from solution
	$Pb^{2+}(aq) + CrO_4^{2-}(aq) \rightarrow PbCrO_4(s)$
	State how the pH of this solution differs from your answer in part (i).
Q4	(1)
	(Total 20 marks)
	TOTAL FOR SECTION B: 40 MARKS
	TOTAL FOR PAPER: 50 MARKS
	END

BLANK PAGE

Ξ
Ξ
\mathbf{I}
\mathbf{C}
\equiv
\subseteq
PER
THE

>			
-			
>			
3			
t			
3			
dnois			
9			
1			

Key

Molar mass g mol⁻¹

Symbol

Hydrogen

Period

 $\mathop{He}_{\text{Helium}}^{4}$

	20	Ne	Neon	10	40	Ar	Argon	81	84	Ķ	Krypton	36	131	Xe	Xenon	54	222	Ru	Radon	86			
	19	ഥ	Fluorine	6	35.5	CI	Chlorine	11	80	Br	Bromine	35	127	П	Iodine	53	210	At	Astatine	82			
	91	0	Oxygen	∞	32	S	Sulphur	16	62	Se	Selenium	34	128	Le	Tellurium	52	210	Po	Polonium	2			
	14	Z	Nitrogen	7	31	Ь	Phosphorus	15	75	As	Arsenic	33	122	Sp	Antimony	51	500	Bi	Bismuth	83			
	12	ပ	Carbon	9	28	$S_{\mathbf{i}}$	Silicon	14	73	Ge	Germanium	32	119	Sn	Tin	20	207	Pb	Lead	82			
	=	В	Boron	5	27	Al	Aluminium	13	70	Ga	Gallium	31	115	ln	Indium	49	204	П	Thallium				
	-								65.4	Zn	Zinc	30	112	рЭ	Cadmium	48	201	Hg	Mercury	2			
									63.5	Cu	Copper	29	801	Ag	Silver	47	161	Au	Gold	6/			
									65	ïZ	Nickel	28	106	Pd	Palladium	46	561	Pt	Platinum	8			
									- 65	ပိ	Cobalt	27	103	Rh	Rhodium	45	192	Ir	Iridium	,			
Name		Atomic number							95	Fe	Iron	56	101	Ru	Ruthenium	44	190	Os	Osmium	٥			
_		Atom							55	Mn	Manganese	25	66	T _C	Technetium	43	186	Re	Rhenium				
									52	Ç	Chromium	24	%	Mo	Molybdenum	42	184	W Re	Tungsten	4			
									51									Ta					
									48	Ϊ	Titanium	22	16	Zr	Zirconium	40	178	Hf	Hafnium				
									45	Sc	Scandium	21	68	Y	Yttrium	39	139	La	Lanthanum	77	/77	Ac	
	6	Be	Beryllium	4	24	Mg	Magnesium	12	40	Ca	Calcium	20	88	Sr	Strontium	38	137	Ba	Barium	000	077	Ra	
	7	Li	Lithium	3	23	Na	Sodium	=	39	×	Potassium	19	85	Rb	Rubidium	37	133	Cs	Caesium	3 2	577	Fr	•

	Lu			-	Lr	<u> </u>	_
173	Α	Ytterbi	70	L	%	_	
169	Tm	Thulium	69	(256)	рW	Mendeleviur	101
167	Er	Erbium	89	(253)	Fm	Fermium	100
165	Ho	Holmium	29		Es	ш	
163	Dy	Dysprosium	99	(251)	Ct	Californium	86
159	Tp	Terbium	9	(245)	Bk	Berkelium	6
157	В	Gadolinium	64	(247)	Cm	Curium	%
152	En	Europium	63	(243)	Am	Americium	95
150	Sm	Samarium	62	(242)	Pu	Plutonium	94
(147)	Pm	Promethium	19	(237)	Np	Neptunium	93
14	PΝ	Neodymium	- 09	238	Ω	Uranium	35
141	Pr	Praseodymium	59	(231)	Pa	Protactinium	91
140	Se	Cerium	58	232	Th	Thorium	06

