Centre No.				Pape	er Refer	ence			Surname	Initial(s)
Candidate No.		6	2	4	4	/	0	1	Signature	

Paper Reference(s)

6244/01 Edexcel GCE

Chemistry

Advanced

Unit Test 4

Tuesday 22 January 2008 - Morning

Time: 1 hour 30 minutes

Materials required for examination	Items included with question papers
Nil	Nil

Candidates may use a calculator.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Answer **ALL** the questions. Write your answers in the spaces provided in this question paper. **Show all the steps in any calculations and state the units.**

Information for Candidates

The total mark for this paper is 75. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 20 pages in this question paper. Any blank pages are indicated

A Periodic Table is printed on the back cover of this booklet.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

 $\begin{array}{c} {\rm Printer's\ Log.\ No.} \\ N29262A \\ {\rm W850/R6244/57570} \\ \end{array} \\ {\rm 7/7/7/3/3/8000} \end{array}$

Total Turn over

Examiner's use only

Team Leader's use only

Question Number

1

2

3

4

5

6

Leave	
blank	

		Answer ALL the questions. Write your answers in the spaces provided.
1.	(a)	State the type of bonding in
		(i) sodium oxide, Na ₂ O
		(ii) silicon dioxide, SiO ₂
	<i>a</i> s	(1)
	(b)	State the acid-base character of
		(i) sodium oxide, Na_2O (1)
		(ii) silicon dioxide, SiO ₂ (1)
	(c)	Write an equation for the reaction between
		(i) sodium oxide, Na ₂ O, and phosphoric acid, H ₃ PO ₄ . State symbols are not required.
		(ii) silicon dioxide, SiO ₂ , and sodium hydroxide, NaOH. State symbols are not required.
		(1)
	(d)	Aluminium oxide, Al_2O_3 , is amphoteric and so reacts with solutions of acids and alkalis.
		Write ionic equations, including state symbols , to show the amphoteric nature of this oxide.
		(3)

	Give the equation for the reaction between lead(IV) oxide and hot concentrated hydrochloric acid. State symbols are not required.
	(1)
(f)	An aqueous solution of tin(II) ions reacts with an aqueous solution of iodine to produce iodide ions, whereas there is no reaction between aqueous lead(II) ions and iodine.
	Explain the difference in behaviour between aqueous tin(II) ions and lead(II) ions.
	(2)
	(Total 12 marks)

2. Consider the following compounds.

(a) Name the functional groups present in the three compounds $X,\,Y$ and Z.

Compound	Functional groups present
X	
Y	
Z	

(3)

Leave blank (b) Compounds \mathbf{X} , \mathbf{Y} and \mathbf{Z} are heated separately with alkaline ammoniacal silver nitrate solution. Draw the full structural formula, showing all bonds, of any **organic product** formed. If a reaction does not occur, write 'no reaction'. Product from X **Product from Y** Product from Z **(3)**

(c) Draw the formulae of the organic products formed by the reaction of	Leave blank
(i) X , CH ₃ CH ₂ CH ₂ COOCH ₃ , with aqueous sodium hydroxide solution.	
(2)	
(ii) Y , CH ₂ CHCH(OH)CH ₃ , with iodine in the presence of aqueous sodium hydroxide solution.	
(iii) 7 CH (OH)CH CH CHO, with hydrogen gyenide	
(iii) Z , CH ₂ (OH)CH ₂ CH ₂ CHO, with hydrogen cyanide.	
(Tatal 11 marks)	Q2
(Total 11 marks)	

Leave	
blank	

3. (a) The equilibrium between hydrogen iodide, hydrogen and iodine was investigated by sealing hydrogen iodide in glass tubes and heating the tubes at 698 K until equilibrium was reached.

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$
 $\Delta H = + 9.4 \text{ kJ mol}^{-1}$

The glass tubes were cooled rapidly and then opened in a solution of potassium iodide so that the concentration of iodine at equilibrium could be determined by titration.

(i) Suggest why the reaction mixture was **cooled rapidly**.

(2)

(ii) The expression for the equilibrium constant, K_c , for the above reaction is

$$K_{c} = \frac{[H_{2}(g)][I_{2}(g)]}{[HI(g)]^{2}}$$

One of the tubes was found to contain iodine at a concentration of $5.0\times10^{-4}\,\text{mol dm}^{-3}$.

Calculate the equilibrium concentration of hydrogen iodide, in mol dm⁻³. The equilibrium constant, K_c , for the above reaction is 0.019 at 698 K.

(3)

Leave	
blank	

(b) In a different experiment, 1.0 mol of hydrogen and 1.0 mol of iodine were allowed to reach equilibrium at 698 K.

$$H_2(g) \, + \, I_2(g) \, \rightleftharpoons \, 2HI(g)$$

At equilibrium, 80% of the hydrogen was converted to hydrogen iodide at a total pressure of 1.1 atm.

(i) Write an expression for the equilibrium constant, K_p , for the reaction as shown.

(1)

(ii) Calculate the value of K_p .

(4)

(iii) Explain why, in this case, K_p has no units.

()

(Total 11 marks)

 $\mathbf{Q3}$

Leave blank

4. The Born-Haber cycle below represents the enthalpy changes when calcium hydride, CaH₂, is formed from its elements.

- (a) Write down in terms of **one** of the symbols ΔH_1 to ΔH_6
 - (i) the lattice energy of calcium hydride(1)
 - (ii) the first electron affinity of hydrogen(1)

10

Leave blank

(b) Use the data below to calculate the standard enthalpy of formation of calcium hydride, $\text{CaH}_2(s)$.

	value / kJ mol ⁻¹
enthalpy of atomisation of calcium	+178
first plus second ionisation energies of calcium	+1735
enthalpy of atomisation of hydrogen	+218
first electron affinity of hydrogen	-73
lattice energy of calcium hydride	-2389

Calculation:

(2)

(c)	Explain why the lattice energy of magnesium hydride, $MgH_2(s)$, is more exothermic than the lattice energy of calcium hydride, $CaH_2(s)$.
	(3)

	In order to calculate the enthalpy of solution of an ionic compound, the lattice energy of the compound and the enthalpies of hydration of the ions present must be known.
	Define the term enthalpy of hydration , ΔH_{hyd} .
	(2)
(i	ii) Explain why the enthalpy of hydration of anions and cations are both exothermic.
	(2)
	(Total 11 marks)

5.	This	que	estion is about propanoic acid, CH ₃ CH ₂ COOH.
	(a)]	Pro	panoic acid is a weak acid which dissociates as follows
			$CH_3CH_2COOH(aq) + H_2O(l) \rightleftharpoons CH_3CH_2COO^-(aq) + H_3O^+(aq)$
	((i)	In the above equation there are two conjugate acid-base pairs.
			Identify them by completing the sentences below
			Formula of one acid is
			The formula of its conjugate base is
			Formula of the other acid is
			The formula of its conjugate base is
			(2)
	((ii)	Propanoic acid is a weak acid. Explain what is meant by the term weak acid.
			Weak
			Acid
			(2)

(b) The acid dissociation constant, K_a , for propanoic acid is $1.30 \times 10^{-5} \text{mol dm}^{-3}$ at 298 K. (i) Write the expression for the acid dissociation constant, K_a , for propanoic acid. (1) (ii) A solution of propanoic acid has a pH of 3.44 at a temperature of 298 K. Calculate the concentration, in mol dm ⁻³ , of the propanoic acid solution. Show clearly two assumptions you have made. Calculation:			
(ii) A solution of propanoic acid has a pH of 3.44 at a temperature of 298 K. Calculate the concentration, in mol dm ⁻³ , of the propanoic acid solution. Show clearly two assumptions you have made. Calculation:	(b)		at
 (ii) A solution of propanoic acid has a pH of 3.44 at a temperature of 298 K. Calculate the concentration, in mol dm⁻³, of the propanoic acid solution. Show clearly two assumptions you have made. Calculation: 		(i) Write the expression for the acid dissociation constant, K_a , for propanoic acid.	-
 (ii) A solution of propanoic acid has a pH of 3.44 at a temperature of 298 K. Calculate the concentration, in mol dm⁻³, of the propanoic acid solution. Show clearly two assumptions you have made. Calculation: 			
Calculate the concentration, in mol dm ⁻³ , of the propanoic acid solution. Show clearly two assumptions you have made. Calculation:			(1)
clearly two assumptions you have made. Calculation:		(ii) A solution of propanoic acid has a pH of 3.44 at a temperature of 298 K.	
			ow
Assumptions:		Calculation:	
Assumptions:			
		Assumptions:	
			••••

(5)

•••	n 7. Explain, with the aid of a suitable equation, why this is so.	
••••		
•••	(2	2)
(d) A 1	mixture of sodium propanoate and propanoic acid acts as a buffer solution.	
(i)	What is meant by a buffer solution ?	
	(2	2)
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3
(ii)	Calculate the pH of a buffer solution made by mixing 100 cm ³ of 0.0100 mol dm ⁻¹ propanoic acid solution with 300 cm ³ of 0.00500 mol dm ⁻³ sodium propanoat solution at 298 K.	-3

6. (a) Glycine is an amino acid.

Leave blank

(i) Draw the full structural formula of the zwitterion of glycine, showing **all** bonds.

COOH

(1)

(ii)	Explain how the zwitterion in glycine is formed.
	(1)
	Use your answer to (i) to explain why glycine has a high melting temperature of 262 °C.

(2)

0)	Suggest the formula of the organic product formed when glycine reacts, under suitable conditions, with
	(i) hydrogen ions, H ⁺
	(1) (ii) hydroxide ions, OH ⁻
	(1)
	(iii) ethanoyl chloride, H ₃ C—C Cl
	(1) (iv) methanol, CH ₃ OH

(1)

Leave blank

(c) Glutamic acid is also an amino acid. The formula of glutamic acid is shown below

Glutamic acid exists as two optical isomers whereas glycine does not.

(i)	Why is glutamic acid chiral?
	(1)
(ii)	How can the two optical isomers of glutamic acid be distinguished from each other?
	(2)

18

	Leave
(d) A section of the polymer nylon-6,6 is shown below	Diank
O O O O O	
Give the formulae of TWO monomers which could react together, under suitable conditions, to form nylon-6,6.	
(2)	Q6
$oxed{(2)}$	
(Total 13 marks)	
(Total 13 marks)	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	
(Total 13 marks) TOTAL FOR PAPER: 75 MARKS	

