Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	2	4	2	/	0	1	Signature	

6242/01 **Edexcel GCE Chemistry**

Advanced Subsidiary

Unit Test 2

Thursday 17 January 2008 - Morning

Time: 1 hour

Materials required for examination	Items included with question papers
Nil	Nil

Candidates may use a calculator.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and

Answer **ALL** the questions. Write your answers in the spaces provided in this question paper. Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 60. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. A Periodic Table is printed on the back cover of this question paper. All blank pages are indicated.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. You will be assessed on your Quality of Written Communication in this paper.

This publication may be reproduced only in accordance with idexcel Limited copyright policy. 2008 Edexcel Limited.

N29260A W850/R6242/57570 7/7/7/3/3/8600

Turn over

Examiner's use only

Team Leader's use only

Question Number

1

2

3

Total

Answer ALL the questions. Write your answers in the spaces provided.

(a)	Mar	no on ore of aluminium	
(a)	INai	me an ore of aluminium.	
			 (1
(b)	Wh	at is carbon used for in the extraction process?	
			(1
(c)	(i)	Write the half-equation for the process occurring at the cathode.	
			(1
	(ii)	The manager of the condition to the fill and	
	(11)	The process occurring at the anode is shown by the following half-equation.	
	(11)	The process occurring at the anode is shown by the following nair-equation. $2O^{2-} \rightarrow O_2 + 4e^-$	
	(11)		
	(II)	$2O^{2-} \rightarrow O_2 + 4e^-$	
	(11)	$2O^{2-} \rightarrow O_2 + 4e^-$	
	(11)	$2O^{2-} \rightarrow O_2 + 4e^-$	(2
(d)		$2O^{2-} \rightarrow O_2 + 4e^-$	
(d)		$2{\rm O}^{2-} ightarrow {\rm O}_2 + 4{\rm e}^-$ Name this type of change and explain your answer in terms of electrons.	(2
	Stat	$2O^{2-} \rightarrow O_2 + 4e^-$ Name this type of change and explain your answer in terms of electrons.	
	Stat	$2{\rm O}^{2-} ightarrow {\rm O}_2 + 4{\rm e}^-$ Name this type of change and explain your answer in terms of electrons.	(2
	Stat	$2O^{2-} \rightarrow O_2 + 4e^-$ Name this type of change and explain your answer in terms of electrons.	(2
	Stat	$2O^{2-} \rightarrow O_2 + 4e^-$ Name this type of change and explain your answer in terms of electrons.	(2

 (1)
(Total 9 marks)

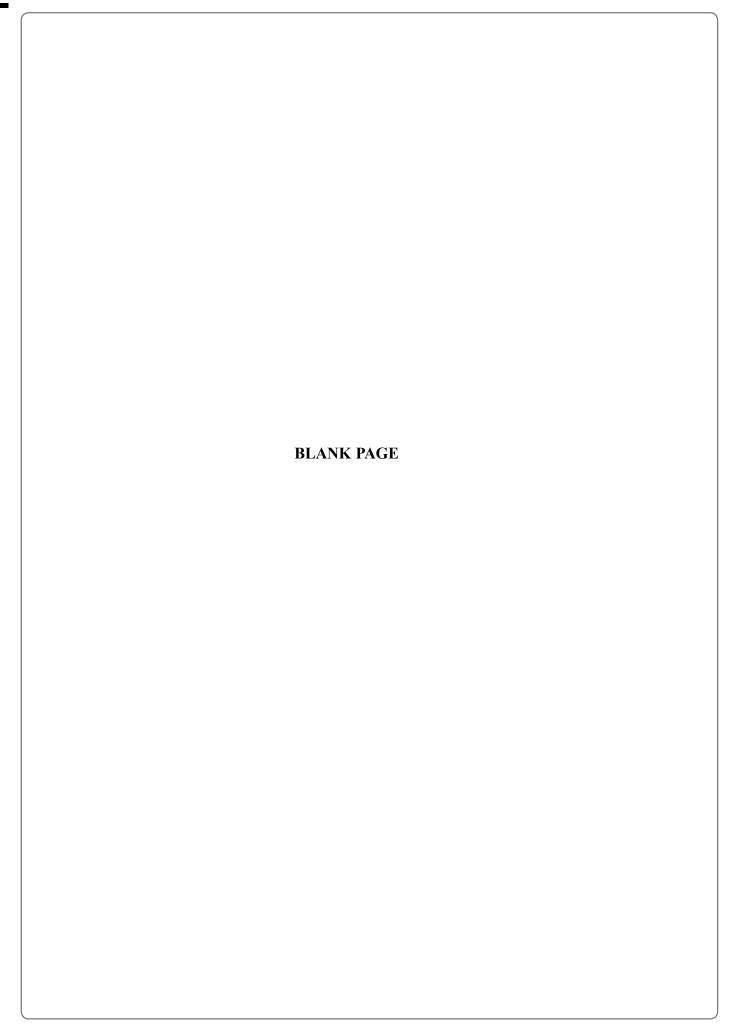
Leave blank

(2)

2. This question is about ammonia, NH_3 , which is produced as shown in the following equation.

$$N_2(g) \,+\, 3H_2(g) \,\rightleftharpoons\, 2NH_3(g)$$

(a) Hee	e oxidation	numbers	to evolaii	n why	thic ic	redov	reaction



(b) (i) Use the average (mean) bond enthalpy data to calculate a value for the enthalpy change for this reaction. You are reminded to show **all** your working.

Bond	Average bond enthalpy /kJ mol ⁻¹
N≡N	944
Н—Н	436
N—H	388

(3)

	The manufacturer of ammonia would like to achieve a high rate of reaction and a equilibrium yield of product.						
(i)	State and explain, in terms of collision theory, TWO ways to increase the rate of the reaction. An increase in pressure does not alter the rate in this process.						
	(6)						

(1)

e) Co	ompound A, Cl	H ₃ CHBrCH ₂ CH ₃ , rea	ects with ammonia.	
(i)	Write an equ	nation for this reaction	n.	
				(1)
(ji)) Give ONE e	ssential condition fo	this reaction	()
(11)) GIVE ONL E	ssential condition to	tins reaction.	
				(1)
(iii	ammonia mo	olecule takes place a	ther substitution of the hyd a different product, comp	
	Analysis of (compound B gave th		
		Element	% by mass	
		hydrogen	74.4	
		nitrogen	10.9	
	Use the data	to calculate the emp	irical formula of compound	В.
	Use the data	to calculate the emp	irical formula of compound	B .
	Use the data	to calculate the emp	irical formula of compound	B.

(Total 16 marks)

Leave blank

4. (a) (i)

Formula of substance	Standard enthalpy of formation /kJ mol ⁻¹
CH ₄ (g)	-75
$O_2(g)$	0
CO ₂ (g)	-394
$H_2O(g)$	-242

The equation for the complete combustion of methane at 150 °C is:

$$CH_4(g) \,+\, 2O_2(g) \,\rightarrow\, CO_2(g) \,+\, 2H_2O(g)$$

Use the given data to calculate the enthalpy of combustion of methane under these conditions.

(2)

(ii)	The standard enthalpy of combustion of methane is –891 kJ mol ⁻¹ .
	Explain why this is very different from the value you have calculated in (a)(i).
	(1)

(iii) Here are some data about different fuels:

Name	Formula	Standard state	Energy evolved per gram / kJ	Relative cost per kJ
hydrogen	H_2	gas	143	2
octane	C_8H_{18}	liquid	48.4	70

State and explain the advantages and disadvantages of using hydrogen compared with octane as a fuel for aeroplanes.

Use the data in the table above and your knowledge of the combustion of fuels to help you.
(4)

(b)	Ethanol is a pa	rimary alcohol a	nd can	be oxidise	ed if heat	ted with an	acidified	soluti	ion
	of potassium	dichromate(VI).	Two	possible	organic	oxidation	products	may	be
	obtained.								

(i) Draw the **full** structural formula, showing all bonds, of **both** oxidation products.

(2)

(ii) Give the name **and** structural formula of an alcohol that would **not** be oxidised by heating it with an acidified solution of potassium dichromate(VI).

(2)

1 2
