Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	2	4	1		0	1	Signature	

6241/01 **Edexcel GCE Chemistry**

Advanced Subsidiary

Unit Test 1

Thursday 17 January 2008 - Morning

Time: 1 hour

Materials required for examination	Items included with question papers
Nil	Nil

Candidates may use a calculator.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and

Answer ALL the questions. Write your answers in the spaces provided in this question paper. Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 60. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. All blank pages are

A Periodic Table is printed on the back cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

This publication may be reproduced only in accordance with dexcel Limited copyright policy. 2008 Edexcel Limited.

W850/R6241/57570 7/7/7/3/3/12,700

Examiner's use only

Team Leader's use only

Question Number 1 2

3 4

5

6

Total

Turn over

Answer ALL questions.	write your answers in the spaces provided.
Complete the electronic cor	afiguration of a copper atom and a bromide ion.

(i) Copper atom, Cu $1s^22s^22p^63s^23p^6$(1)

(ii) Bromide ion, Br⁻ $1s^22s^22p^63s^23p^6$

(b) Define the term relative atomic mass.

(2

(c) The following data were obtained for a mass spectrum of a sample of copper.

Relative isotopic mass	Percentage abundance
62.93	69.17
64.93	30.83

Calculate the relative atomic mass of this sample of copper. Give your answer to two decimal places.

(2)

1. (a)

Leave blank

(d) Copper occurs naturally as the mineral malachite. The composition, by mass, of malachite is as follows:

Cu = 57.5% C = 5.4% O = 36.2% H = 0.9%

(i) Calculate its empirical formula.

(2)

(ii) The molar mass of malachite is 221 g mol⁻¹. Calculate its **formula**.

(1)

(e) Copper forms a chloride, CuCl₂. Use the data below to calculate the maximum and the minimum values for the molar mass of CuCl₂.

Data: Relative isotopic masses of chlorine are 35 and 37. Relative isotopic masses of copper are 63 and 65.

(2)

Q1

(Total 11 marks)

2.	(a)	Lithium chlo	ride, potassium carbonate and sodium iodide can be distinguished using	9
		flame tests.	Complete the table below.	

	Formula	Flame colour
lithium chloride	LiCl	
potassium carbonate	K ₂ CO ₃	
sodium iodide	NaI	

(2)

(b)	Explain the origin of the colours in the flame test.	
		(2)
(c)	Write equations for the following reactions. Do not include state symbols.	
	(i) Lithium chloride and concentrated sulphuric acid.	
		(1)
	(ii) Potassium carbonate and dilute nitric acid.	
		(1)
	(iii) Sodium iodide solution and silver nitrate solution.	
		(1)

(i)	Use ideas of ion polarisation or electronegativity to suggest why beryllium
	chloride, a compound of a metal and a non-metal, is covalent rather than ionic.
	(2)
	Draw a 'dot and cross' diagram to show the bonding in a beryllium chloride
	(1)
	(1) (Total 10 marks)

(c)		en hydrogen fluoride reacts with water it forms hydrogen ions. A lone	
	elect H ₃ O	etrons on the water molecule joins with the hydrogen ion, H ⁺ , to produce D ⁺ .	e the ion
	(i)	Draw a diagram to show clearly the shape of the $\mathrm{H_3O}^+$ ion.	
			(1)
	<i>(</i> ;;)		(1)
	(11)	Suggest an approximate value for the bond angle H—O—H in H ₃ O ⁺ .	
	(iii)	The oxygen atom in water has two lone pairs of electrons. Suggest why	(1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why	(1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why	(1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why	(1) y the ion (1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1) y the ion (1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1) y the ion (1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1) y the ion (1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1) y the ion (1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1) y the ion (1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1) y the ion (1)
		The oxygen atom in water has two lone pairs of electrons. Suggest why H_4O^{2+} is not generally formed in acid solutions that contain the H^+ ion.	(1) y the ion (1)

(a)	Explain the term reducing agent in terms of oxidation number change.
	(1)
(b)	Write ionic half-equations (do not include state symbols) to show:
	(i) chlorate(I) ions, ClO-, in acidic solution, being reduced to chlorine molecules and water.
	(1)
	(ii) chloride ions being oxidised to chlorine molecules.
	(1)
(c)	Combine the two equations in (b) to show the effect of adding an acid to a mixture of chlorate(I) ions and chloride ions.
	(1)
(d)	Describe what you would see if concentrated sulphuric acid is added to solid sodium iodide.
	(2)

(i) Write the equation for this reaction. State symbols are not required. (1) (ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3) (Total 10 marks)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	ow, by the use of oxidation numbers , why this is a redox reaction. (1)		d oxygen, O ₂ .
(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	ow, by the use of oxidation numbers , why this is a redox reaction. (1)		Write the equation for this reaction. State symbols are not required.
(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	(ii) Show, by the use of oxidation numbers , why this is a redox reaction.	(ii) Show, by the use of oxidation numbers , why this is a redox reaction. (3)	ow, by the use of oxidation numbers , why this is a redox reaction. (3)		
(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)		Show, by the use of oxidation numbers , why this is a redox reaction.
											•••••	
											•••••	
											(3)	
(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)	(Total 10 marks)		
											narks)	(Total 10 m

Leave	
hlank	

5.	(a)	Cooking fuels and petrol for car engines need to be gases or liquids which vaporise
		easily. This will be the case if the intermolecular forces are weak.

Two common fuels are methane, CH_4 , and 2,2,4-trimethylpentane, C_8H_{18} .

	Electronegativity
carbon	2.1
hydrogen	2.5

(1)	Explain the meaning of the term electronegativity .
	(2)
(ii)	The C—H bond in methane has some polarity but overall the molecule is non-polar.
	Explain why methane is a non-polar molecule.
	(2)
(iii)	Identify the strongest intermolecular force that exists between 2,2,4-trimethylpentane molecules in the liquid state.
	2,2,1 difficulty ipentatic inforcedies in the figure state.
	(1)

Leave blank

(b) In a car engine 2,2,4-trimethylpentane burns in air to produce carbon dioxide and water.

The equation is

$$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$$

Molar mass of $C_8H_{18} = 114 \text{ g mol}^{-1}$

(i) Calculate the volume of oxygen needed to burn 700 g of 2,2,4-trimethylpentane. [Assume the molar volume of a gas = $24.0 \text{ dm}^3 \text{ mol}^{-1}$]

(3)

(ii) Calculate the mass of carbon dioxide produced in the reaction in (i).

(2)

(Total 10 marks)

Q5

a)	Define the term first ionisation energy .	
<i>u)</i>	being the term mot formswelon energy.	
		•••••
		•••••
		(3)
		(3)
b)	Explain why the first ionisation energy of potassium is less than that of sodium.	
		(3)
		(3)
		(3)
		(3)

	Na	Mg	Al	Si	P (white)	S	Cl	Ar	
Melting temperature / K	371	923	933	1683	317	392	172	84	
Гуре of structure									
Choose ye	our ansv	wers fro	om the fo	e type of structure ollowing list:	-		ements		
				nigh melting tempe				(1)	
(ii) Explain w	viry sinc	2011 1143	a very n	ngn mening tempe	rature.				
(iii) Explain w	why alur	ninium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	
(iii) Explain w	vhy alur	ninium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	
(iii) Explain w	vhy alur	minium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	
(iii) Explain w	vhy alur	ninium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	
(iii) Explain w	vhy alur	minium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	
(iii) Explain w	vhy alur	minium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	
(iii) Explain w	vhy alur	minium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	
(iii) Explain w	vhy alur	minium	has a hi	gher melting temp	erature tha	n sodi	um.	(2)	

END

0	$\begin{array}{c} 4\\ He\\ Helium\\ 2\\ Neon\\ Neon\\ Ar\\ Ar\\ Ar\\ Argon\\ \end{array}$	Krypton 36 36 Xenon S44 Xenon S4	Radon 86	
7	19 F. Fluorine 9 9 33.5 C.I. Chlorine	80 Br Bromine 35 127 I I odine	At Astatine 85	$\begin{array}{c} 175 \\ Lu \\ Lutetium \\ 71 \\ \end{array}$
9	16 O Oxygen 8 8 8 S	Se Selenium 34 128 Tellurium 52	Po Polonium 84	$\begin{array}{c} \text{173} \\ Yb \\ Yterbium \\ 70 \\ \\ No \\ Nobelium \\ 102 \\ \end{array}$
w	N Nitrogen 7 31 Phosphorus	AS Arsenic 33 122 Sb Antimony 51	Bismuth 83	Thulium 69 69 Md Mendelevium 101
4	e e	Ge Germanium 32 119 Sn Tin 50	Pb Lead	167 Erbium 68 68 (253) Fm Fermium 100
ю	B Boron 5 27 AI Aluminium	Gallium 31 115 116 117 118 118 119 119	TI Thallium 81	Homium 67 (254) Einsteinium 99
		65.4 Zn Zinc 30 112 Cd Cd Cadmium 48	Hg Mercury 80	159 163 163 Terbium Dysprosium 65 66
		63.5 Cu Copper 29 108 Ag Silver 47	Au Gold	$\begin{array}{c} Tb \\ Tb \\ Terbium \\ 65 \\ \hline \\ (245) \\ BK \\ Berkelium \\ 97 \\ \end{array}$
र्ञ		Nickel 28 106 Pd Palladium 46	Pt Platinum 78	Gdd Gadolinium 64 Carrium Currium 96
THE PERIODIC TABLE Group	-	CO Cobalt 27 103 Rh Rhodium 45	Indium 77	Europium 63 Am Americium 95
RIODIC Group	Key Molar mass g mol¹ Symbol Name Atomic number	$\begin{array}{c} 56 \\ Fe \\ Iron \\ 26 \\ 101 \\ Ru \\ Ruthenium \\ 44 \end{array}$	Osmium 76	(147) 150
PERI G	Molar	52 55 Cr Mn Chromium Manganese 24 99 MO Tc Molybdenum Technetium 42 43	Rhenium 75	Pm Promethium 61 (237) Np Neptunium 93
THI			184 W Tungsten 74	Pr Nd Nd Nd Nd Noodymium S9 60 60
		Vanadium 23 93 Nb Niobium 41	Tantalum 73	
		48 Titanium 22 91 Zirconium 240	· · · ±	Cerium S8 S8 Thorium Thorium 90
		Scandium 21 89 Yttrium 39	Lanthanum 57 227 Actinium 89	
7	Ma Be Be	Ca Calcium 20 88 Sr Strontium 518 88		
1	H H	Rediction of the state of the s	Caesium 55 223 Francium 87	
	Period 1 2 3	4 v	9 1	

