Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	2	4	1	/	0	1	Signature	

Paner Reference(s)

6241/01 **Edexcel GCE**Chemistry

Advanced Subsidiary

Unit Test 1

Wednesday 6 June 2007 - Morning

Time: 1 hour

Materials required for examination	Items included with question papers
Nil	Nil

Candidates may use a calculator.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Answer **ALL** the questions. Write your answers in the spaces provided in this question paper. One of the questions in this paper must be answered with a cross in a box (\boxtimes). If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes).

Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 60. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. All blank pages are indicated.

A Periodic Table is printed on the back cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2007 Edexcel Limited

 $\begin{array}{c} {\rm Printer's\ Log.\ No.} \\ N26021A \\ {\rm W850/R6241/57570} \\ {\rm 7/7/7/3/20,800} \end{array}$

Turn over

Total

Examiner's use only

Team Leader's use only

Question Number

1

2

3

4

5

6

Answer ALL questions. Write your answers in the spaces provided.

1. (a) Complete the table below which is about the isotopes and an ion of bromine.

		Number of	
	protons	neutrons	electrons
⁷⁹ ₃₅ Br	35		35
⁸¹ ₃₅ Br		46	35
⁸¹ ₃₅ Br ⁻	35	46	

Leave blank

(2)

(e) The isotopic abundance of bromine is shown below.

Relative isotopic mass	Percentage abundance
78.93	50.54
80.91	49.46

Calculate the relative atomic mass of bromine. Give your answer to **four** significant figures.

(f)	State the types of bonding present in bromine liquid
	between the atoms
	between the molecules
(g)	What colour is liquid bromine?
	(1)
(h)	State the colour produced by sodium compounds in a flame test.
	(1)
(i)	Sodium reacts with bromine to produce sodium bromide. Write the equation for this reaction.
	(1)
(j)	State the type of bond present in solid sodium.

(1	x) State the type of bond that exists in sodium bromide.	Leave blank
	Draw a dot and cross diagram of sodium bromide, showing only the outer shell electrons.	
	Type	
	Dot and cross diagram	
	(3)	Q1
	(Total 18 marks)	

	lithium nitrate, LiNO ₃ .										
				(2							
((ii) caesium nitrate, CsNO ₃ .										
`		,									
				(1)							
				and barium are shown							
t	below. Use the info	ormation in the table to	answer the quest	ions that follow.							
Γ	Substance	Solubility	Substance	Solubility							
+	CaSO ₄	slightly soluble	Ca(OH) ₂	slightly soluble							
-			· · · · · ·								
	BaSO_4	insoluble	Ba(OH) ₂	soluble							
	-	(i) Both calcium and barium metals react with water to give the metal hydroxide and									
		nd harium metals react	with water to give	the metal hydroxide and							
(nd barium metals react	with water to give	the metal hydroxide and							
(i) Both calcium a hydrogen gas.			the metal hydroxide and metal and barium meta							
(i) Both calcium a hydrogen gas.	ce would you expect to									
(i) Both calcium a hydrogen gas. What difference	ce would you expect to									
(i) Both calcium a hydrogen gas. What difference	ce would you expect to									
(i) Both calcium a hydrogen gas. What difference	ce would you expect to									
(i) Both calcium a hydrogen gas. What difference	ce would you expect to									

			•••••				
				(2)			
	olubility in w	vater of radium sulp	hate.	Put a cross (⋈) in the correct			
box.		T	1				
	A	Very soluble	×				
	В	Soluble	×				
	С	Slightly soluble	×				
	D	Insoluble	×				
				(1)			
		or the reaction of cas in your equation.	lcium	metal with dilute hydrochloric			
			•••••	(2)			
				(Total 10 marks)			

(3)

3. (a) (i) Define the term first ionisation energy.

(ii) Write the equation for the process occurring when the **second** ionisation energy of oxygen is measured.

(1)

(b) The graph below shows the first seven successive ionisation energies of an element, **X**, which is in **Period 3** of the Periodic Table.

Ionisation energy /kJ mol⁻¹

Number of the electron removed

8

		(2)
(i	i) Identify the element \mathbf{X} .	` ,
		(1)
	he mass spectrum of X shows a singly charged molecular ion at $m/e = 256$.	
W	rite the formula of this ion.	
		(2)
	(Total 9 ma	arks)

(')	andissus alclauida	
(1)	sodium chloride	
		••••••
		(2)
(ii)) graphite	
()	, 6	
		(2)

•••••
(2)
•••••
(1)
` '
• • • • • • •

	•••••				
		•••••			(1)
b)			ction between	reen solid sodium halides and concentrated sulphuric aciescended.	d changes
	(i)		_	balancing of the equation for the reaction of sodium bro sulphuric acid.	mide with
N	IaCl	+	H ₂ SO ₄	→ NaHSO ₄ + HCl	
2N	aBr	+	H ₂ S	$SO_4 \rightarrowSO_4 +SO_2 +Br_2 +$	H ₂ O
81	NaI	+	9H ₂ SO ₄	\rightarrow 8NaHSO ₄ + H ₂ S + 4I ₂ + 4H ₂ O	(1)
	(ii)	Wri	te the oxid	dation numbers of sulphur in the following:	
			H_2SO_2	04	
			NaHS	SO ₄	
			SO_2		
			H_2S		(2)
	(iii)	shov		nges in oxidation number of sulphur in the reactions e halides become more powerful reducing agents as the	
			•••••		

(Total 6 marks)

(2)

Q5

		(2)
(b)	Z is a Group 0 element.	
	(i) 1.907 g of Z contains 2.87×10^{22} atoms of Z .	
	Calculate the relative atomic mass of Z .	
	[Avogadro constant = $6.02 \times 10^{23} \text{mol}^{-1}$]	
		(2)
	(ii) Suggest the identity of Z .	
		(1)
		(1)

Leave blank

(c) Potassium superoxide, KO_2 , reacts with water as follows:

$$2KO_2(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2O_2(aq) + O_2(g)$$

(i) Calculate the mass of potassium superoxide needed to produce 3.09 g of hydrogen peroxide.

[Molar mass of potassium superoxide, KO_2 : 71 g mol $^{-1}$. Molar mass of hydrogen peroxide, H_2O_2 : 34 g mol $^{-1}$]

(3)

(ii) Calculate the volume of oxygen produced from the reaction in (i).

[Molar volume of oxygen under the conditions of the reaction = $24.0 \text{ dm}^3 \text{ mol}^{-1}$]

(1)

Q6

(Total 9 marks)

TOTAL FOR PAPER: 60 MARKS

END

Moder mass g mod Symbol Name Name
