Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	2	4	6	/	0	2	Signature	

Paper Reference(s)

6246/02

Edexcel GCE

Chemistry

Advanced

Unit Test 6B (Synoptic)

Thursday 25 January 2007 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question papers
Nil	Nil

A calculator may be used.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Answer Section A in the spaces provided in this question paper.

Answer **TWO** questions in Section B in the spaces provided in this question paper. Indicate which question you are answering by marking the box (\boxtimes). If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new question with a cross (\boxtimes).

Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 50. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. All blank pages are indicated.

A Periodic Table is printed on the back cover of this question paper.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. You will be assessed on your Quality of Written Communication in this paper.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2007 Edexcel Limited.

 ${\stackrel{\rm Printer's\ Log.\ No.}{N23437A}}_{{\rm W850/R6246/57570}}{\stackrel{\rm Printer's\ Log.\ No.}{7/7/4/700}}$

Turn over

Total

Examiner's use only

Team Leader's use only

Question Number

1

3

SECTION A

		Answer ALL parts of this question in the spaces provided.
1. (a	im dic	batch of impure copper was analysed as follows: a sample of 0.800 g of the pure copper was heated with 50.0 cm ³ of acidified 0.150 mol dm ⁻³ potassium chromate(VI) solution, K ₂ Cr ₂ O ₇ (aq). It was found that 0.00342 mol of potassium chromate(VI) was left unreacted after the reaction was complete.
	(i)	Write the half-equation for the reduction of $Cr_2O_7^{2-}$ to Cr^{3+} under acidic conditions, and the half-equation for the oxidation of Cu to Cu^{2+} .
		Combine these two half-equations to produce the redox equation for the oxidation of copper by dichromate(VI) ions under acidic conditions.
		(3)
	(ii)	Calculate the percentage of copper in this sample. Give your answer to three significant figures.

(5)

Leave

SECTION B

Answer any TWO questions from this section in the spaces provided.

If you answer Question 2 put a cross in this box \square .

2. This question concerns the following reaction scheme, which shows the synthesis of compound **B** and some subsequent reactions.

$$A \qquad B$$

$$A \qquad B$$

$$\downarrow Step 2$$

$$OH$$

$$H_3C - C \longrightarrow O - CH_3$$

$$H \qquad C \qquad \downarrow Step 3$$

$$H_3C - C \longrightarrow O - CH_3$$

$$\downarrow Step 3$$

$$\downarrow Step 3$$

$$\downarrow Step 3$$

(a) A structural isomer of **B** is also obtained in **Step 1**. Suggest a possible structure for this isomer.

(1)

(b) (i) Give the number of peaks you would expect in the low resolution proton n.m.r. spectrum of $\bf B$ and the relative areas of these peaks.

(2)

ı			Leave
	(e)	The reagent for Step 4 , to produce E , is hydrogen bromide, HBr.	blank
		Draw the mechanism for this reaction.	
		(3)	
l			

(2)
(3)
(Total 17 marks)

If you answer Question 3 put a cross in this box \square .

3. (a) The following equation shows the production of nitrogen monoxide, NO, which is the first step in the manufacture of nitric acid, HNO_3 .

$$4NH_3(g)+5O_2(g) \rightleftharpoons 4NO(g)+6H_2O(g)$$

(i) Use the data below to calculate the enthalpy change for this reaction. Include a sign and units in your answer.

Substance	Enthalpy of formation / kJ mol ⁻¹
NH ₃ (g)	-46.2
NO(g)	+90.4
H ₂ O(g)	-242

(2)

(b) In a laboratory experiment to determine the molar enthalpy of neutralisation, $25.0 \, \mathrm{cm^3}$ of nitric acid and $25.0 \, \mathrm{cm^3}$ of sodium hydroxide, each of concentration $1.00 \, \mathrm{mol} \, \mathrm{dm^{-3}}$, and each at a temperature of $21.0 \, ^{\circ}\mathrm{C}$, were mixed together in a beaker. The final temperature of the mixture was $27.5 \, ^{\circ}\mathrm{C}$, and the following reaction occurred:

$$NaOH(aq) + HNO_3(aq) \rightarrow NaNO_3(aq) + H_2O(1)$$

Calculate the molar enthalpy of neutralisation from the above data. [You may assume that all solutions have a density of $1.00\,\mathrm{g\ cm^{-3}}$ and a specific heat capacity of $4.18\,\mathrm{J}\,^{\circ}\mathrm{C}^{-1}\,\mathrm{g^{-1}}$].

(3)

(3)
(3)
(3) (Total 17 marks)

		If you answer Question 4 put a cross in this box \square .
. (a)	(i)	Draw a dot and cross diagram of a molecule of hydrogen fluoride, HF, showing outer electrons only.
		(1)
	(ii)	Explain the hydrogen bonding in hydrogen fluoride.
		(3)

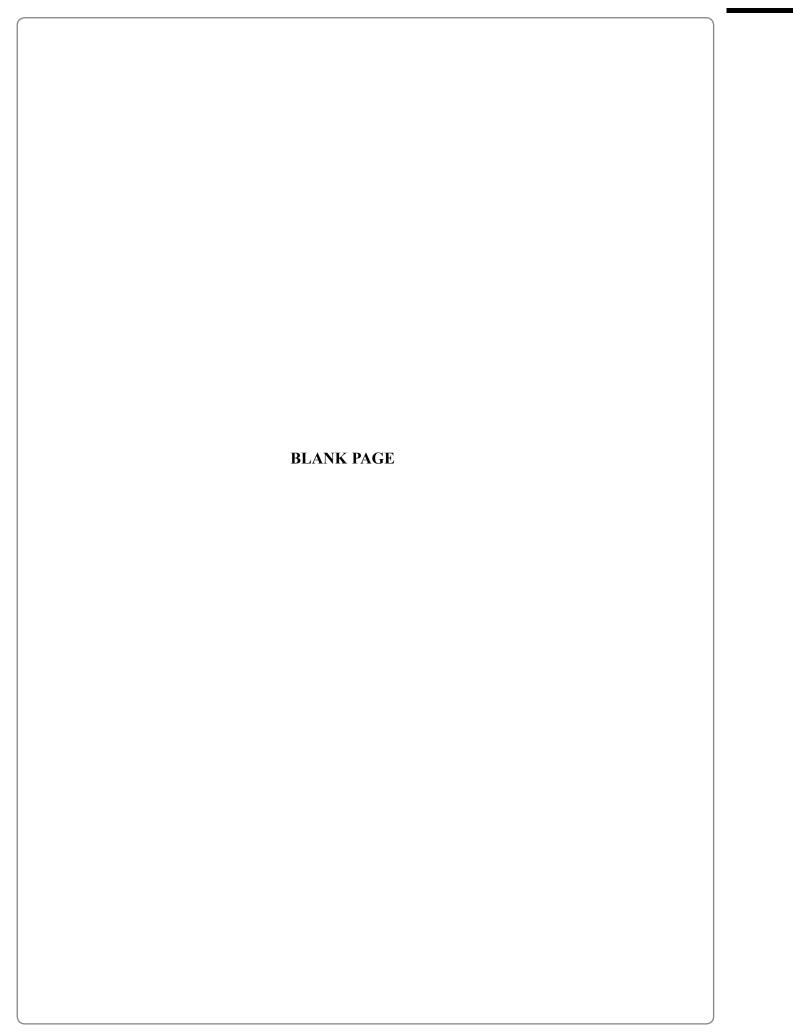
(2)

(b) (i)	Hydrogen fluoride forms the weak acid hydrofluoric acid, HF(aq), when dissolved
	in water.

Write an equation to show the partial dissociation of hydrofluoric acid in water and write the expression for the acid dissociation constant, K_a , for this reaction.

(ii) When sodium hydroxide solution is added to hydrofluoric acid, the following reaction occurs:

$$HF + OH^- \rightarrow F^- + H_2O$$


A $10.0\,\mathrm{cm^3}$ portion of $0.120\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide solution was added to $25.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ hydrofluoric acid.

Calculate the concentrations of HF and of F^- in the resulting mixture, and hence the pH of this mixture.

[The value of K_a for HF is 5.62×10^{-4} mol dm⁻³]

(6)

	(''') TTI
	(iii) The mixture formed in (b)(ii) is a buffer solution.
	Explain why a solution of hydrofluoric acid on its own is not a buffer solution.
	(2)
(c)	Fluorine reacts with boron to form boron trifluoride, BF ₃ .
	(i) Draw the shape of a boron trifluoride molecule.
	(1)
	(ii) Boron trifluoride reacts with ammonia to form the molecule $H_3N \rightarrow BF_3$.
	State and explain the change in the FBF bond angle when this compound is formed.
	(2)
	(Total 17 marks)
	TOTAL FOR SECTION B: 34 MARKS
	TO THE TORK SECTION D. C. INTIMES

•	$\begin{array}{c} \mathbf{He} \\ \mathbf{He} \\ \mathbf{He} \\ \mathbf{He} \\ \mathbf{Ne} \\$	_
7	19 F Fluorine 9 9 9 9 9 9 9 9 9	Lawrenciun 103
9	16 O O Oxygen S S Sulphur C O O Oxygen S Sulphur C O O Oxygen D Ox	Nobelium 102
w	$\begin{array}{c c} & 14 \\ & N \\ & N \\ & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 16 \\ & 169 $	Mendeleviu 101
4	$\begin{array}{c c} & & & & \\ & &$	Fermium 100
6	11 12 13 14 15 165	Einsteinium 99
	11 B Boron 5 5 7 1 1 1 1 1 1 1 1 1	Californium 98
	65.5 Cu Copper 108 Ag Ag Au 197 197 Au Gold 79 Trefslium 65 BK	Berkelium 97
E	Nickel C S S S S S S S S S	
TABI	S9 S9 CO Cobalt Coba	Americium 95
RIODIC	Key	Plutonium 94
E PERIODIC TABLE Group	Molar ma Syr	Neptunium 93
THI	22 Cr Chromium W Mo lolybdemu W W W W Wedymiu L144 Neodymiu L144 Neodymiu L144 U W W W W W W W W W W W W W W W W W W	Uranium 92
		Protactinium 91
	48 Tritanium 22 91 71 Tritanium 140 178 Haftnium 72 Ce Certium 58 73 71 72 72 72 72 72 73 74 74 74 74 74 74 74 74 74 74 74 74 74	Thorium 90
	Sc Scandium 21 21 89 89 Y Yutrium 39 139 139 139 139 727 227 Actinium 89	
7	Peryllium A 24 A 24 Mg Magnesium 20 88 Sr Str Strontium 38 137 Ba Barium 56 Radium 88 Radium 88	
_	$\begin{array}{c c} I \\ H \\ Hydrogen \\ I \\ $	
	Period 1 1 6 5 7 6 5 1	

