| Centre
No. | | | Paper Reference | | | Surname | Initial(s) | | | | | |------------------|--|--|-----------------|---|---|---------|------------|---|---|-----------|--| | Candidate
No. | | | 6 | 2 | 4 | 4 | / | 0 | 1 | Signature | | Paper Reference(s) 6244/01 # **Edexcel GCE** # **Chemistry** ## **Advanced** Unit Test 4 Monday 19 June 2006 - Afternoon Time: 1 hour 30 minutes | Materials required for examination | Items included with question paper | |------------------------------------|------------------------------------| | Nil | Nil | #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Answer **ALL** the questions. Write your answers in the spaces provided in this question paper. **Show all the steps in any calculations and state the units.** ### **Information for Candidates** The total mark for this paper is 75. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. All blank pages are indicated. A Periodic Table is printed on the back cover of this booklet. You may use a calculator. ### **Advice to Candidates** You are reminded of the importance of clear English and careful presentation in your answers. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. © 2006 Edexcel Limited Printer's Log. No. N22201A W850/R6244/57570 7/7/7/4/14,600 Team Leader's use only Total **Turn ove**i Leave blank | Ans | swer ALL the questions. Write your answers in the spaces provided. | | | | | |--|--|--|--|--|--| | a) Aluminium chloride, Al ₂ Cl ₆ , is formed when dry chlorine is passed over aluminium. | | | | | | | (i) | Write the equation for the reaction between aluminium and chlorine. | | | | | | | (1) | | | | | | (ii) | What types of bonding exist in aluminium chloride, Al ₂ Cl ₆ ? | | | | | | | (2) | | | | | | Sili | con tetrachloride, SiCl ₄ , is vigorously hydrolysed by water. | | | | | | (i) | Write an equation for this hydrolysis reaction. | | | | | | | (1) | | | | | | (ii) | Suggest, with a reason, a specific safety precaution when this reaction is carried out. | | | | | | | (2) | | | | | | Car | bon also forms a tetrachloride, CCl ₄ . | | | | | | (i) | State the shape of the CCl ₄ molecule. | | | | | | | (1) | | | | | | (ii) | Explain why carbon tetrachloride is not hydrolysed by water. | (3) | | | | | | | Alualur (i) (ii) (iii) Car (i) | | | | | | | $PbO_2(s) + 4HCl(aq) \rightarrow PbCl_2(s) + Cl_2(g) + 2H_2O(l)$ | |----|--| | | What property of lead(IV) oxide is shown by this reaction? | | | (1) | | e) | A student suggested two possibilities for the reaction between tin(IV) oxide and concentrated hydrochloric acid: | | | I $SnO_2 + 4HCl \rightarrow SnCl_2 + Cl_2 + 2H_2O$
II $SnO_2 + 4HCl \rightarrow SnCl_4 + 2H_2O$ | | | Use your knowledge of the chemistry of Group 4 to predict which of the above reactions is the more likely. Explain your reasoning. | | | | | | | | | | | | | | | (2) | | | | | | (Total 13 marks) | npound A is reacted with iodine in the presence of alkali. A pale yellow cipitate forms. | |-----|------------------|--| | | (i) | What is the formula of this precipitate? | | | | (1) | | | (ii) | What does this reaction indicate about the structure of A ? | | | | (1) | | | (iii) | Compound A has a branched carbon chain. Draw the structural formula and give the name of A . Formula | Name(2) | | | Who | | | | Who | tanal is a structural isomer of A . en heated with Fehling's solution, it reacts to produce sodium pentanoate and a | | | Who | tanal is a structural isomer of A . en heated with Fehling's solution, it reacts to produce sodium pentanoate and a precipitate. | | | Who red (i) | tanal is a structural isomer of A . en heated with Fehling's solution, it reacts to produce sodium pentanoate and a precipitate. Identify the homologous series to which pentanal belongs. | | | Who red (i) | tanal is a structural isomer of A . en heated with Fehling's solution, it reacts to produce sodium pentanoate and a precipitate. Identify the homologous series to which pentanal belongs. (1) | | (c) | Who red (i) (ii) | tanal is a structural isomer of A . en heated with Fehling's solution, it reacts to produce sodium pentanoate and a precipitate. Identify the homologous series to which pentanal belongs. (1) Suggest the identity of the red precipitate formed in this reaction. | | (i) State what you would see as this reaction | n proceeds | |---|------------------| | (i) State what you would see as ans reaction | i proceeds. | | | | | | (1) | | (ii) Write a balanced chemical equation for t | his reaction. | | | | | | (2) | | | (Total 10 marks) | 3. (a) (i) Calculate the pH of $0.050 \text{ mol dm}^{-3}$ hydrochloric acid. **(1)** (ii) Calculate the concentration of hydroxide ions, in mol dm⁻³, in this solution. At this temperature, $K_{\rm w} = 1.00 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6}$. **(1)** (b) Phosphoric(V) acid, H_3PO_4 , is a weak acid, forming the following equilibrium in water: $$H_3PO_4(aq) + H_2O(l) \rightleftharpoons H_2PO_4^-(aq) + H_3O^+(aq)$$ (i) Write an expression for the acid dissociation constant, K_a , for phosphoric(V) acid. **(1)** (ii) Given that a 0.500 mol dm⁻³ solution of phosphoric(V) acid has a pH of 1.20, calculate the value of K_a , stating its units. Assume that there is no further dissociation of the $H_2PO_4^-$ ion. **(4)** | - | |---| | | | | | | | | | | | (c) | The $H_2PO_4^-$ ion formed when phosphoric(V) acid is added to water can dissociate further into HPO_4^{2-} . | | |-----|---|--| | | $H_2PO_4^-(aq) + H_2O(1) \rightleftharpoons HPO_4^{2-}(aq) + H_3O^+(aq)$ | | | | | | | | (i) In the spaces below the equation, identify the acid base conjugate pairs. (2) | | | | (ii) Explain why very little dissociation of the H ₂ PO ₄ ⁻ ion occurs in solutions of phosphoric(V) acid. | | | | | | | | | | **(1)** Leave blank (d) The change in pH when $25.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ phosphoric(V) acid is titrated with sodium hydroxide solution of the same concentration can be seen on the graph below. Volume of $0.100 \text{ mol dm}^{-3} \text{ sodium}$ hydroxide solution added/cm³ From the list below, select a suitable indicator for this titration. Justify your choice. | | pK_{In} | |-------------------|-----------| | bromocresol green | 4.7 | | bromothymol blue | 7.0 | | phenolphthalein | 9.3 | |
 |
 | | |------|------|--| *************************************** | ٠ | |---|---| | | | **(2)** Q3 (Total 12 marks) | | Enthalpy of hydration of Mg ²⁺ | −1890 kJ mol ^{−1} | | |----------|--|----------------------------|-----| | | Enthalpy of hydration of Ba ²⁺ | -1275 kJ mol ⁻¹ | | | | Enthalpy of hydration of OH ⁻ | -550 kJ mol ⁻¹ | | | | Lattice energy of Mg(OH) ₂ | -2995 kJ mol ⁻¹ | | | | Lattice energy of Ba(OH) ₂ | -2320 kJ mol ⁻¹ | | | | | 2320 KJ 11101 | | | a) (i) I | Define the term enthalpy of hydration . | (2) | | | | | (2) | | | | | | | (ii) l | Explain why this enthalpy change is always | ays exothermic. | | | (ii) I | Explain why this enthalpy change is always | ays exothermic. | | | (ii) 1 | Explain why this enthalpy change is always | ays exothermic. | | | (ii) I | Explain why this enthalpy change is always | ays exothermic. | | | (ii) I | Explain why this enthalpy change is always | ays exothermic. | | | (ii) I | Explain why this enthalpy change is always | | | | (ii) I | | | (2) | | (b) Why | | | (2) | | (b) Why | is the lattice energy of magnesium hy | | (2) | | (b) Why | is the lattice energy of magnesium hy | | (2) | | (b) Why | is the lattice energy of magnesium hy | | (2) | | (b) Why | is the lattice energy of magnesium hy | | (2) | | (b) Why | is the lattice energy of magnesium hy | | (2) | | (b) Why | is the lattice energy of magnesium hy | | (2) | | (c) | (i) | Draw a labelled Hess's law cycle to show how the lattice energy and the | 1 | |-----|------|--|---| | | | enthalpies of hydration are related to the enthalpy of solution of magnesium hydroxide, Mg(OH) ₂ (s). | (3) | | | | (ii) | Use your cycle and the data to calculate the enthalpy of solution of magnesium hydroxide. Include a sign and units with your answer. | (2) | | | (d) | Use | e the data to explain how the solubility of barium hydroxide compares with that of | | | · / | | gnesium hydroxide. | | | | | | | | | | | | | | | | | | | •••• | | | | | | | | | | •••• | (3) | | | _ | | |-------|--| | Leave | | | blank | | 5. The painkilling drug ibuprofen has the formula (a) (i) On the diagram above, circle the chiral centre. **(1)** | ••••• | ••••• |
••••• | |-------|-------|-----------| | | | | | | |
••••• | | | | (1) | (b) Ibuprofen exists as a pair of optical isomers. How can these two isomers be distinguished? | | •••• | |-----|------| | (2) | •••• | (c) The formula of ibuprofen can be represented as RCOOH. Consider the following reaction scheme involving ibuprofen: (i) Suggest reagents for the conversion of: | ibuprofen to A, | | |-----------------|-----| | | | | B to C. | | | | (2) | (ii) Classify the type of reaction converting **A** into **B**. | (1) | |------------| | | (2) | |----|--| | e) | Ibuprofen and compound ${\bf A}$ both react with ethanol to form the same organic product. | | | (i) Draw the structural formula of this product. | | | You may use R— to represent the same portion of the carbon chain as in (c). | | | | | | | | | | | | (1) | | | (ii) Suggest TWO reasons why it is preferable to use A , rather than ibuprofen, to carry out this reaction. | | | | | | | | | | | | (2) | | f) | Compound \mathbf{C} can be converted back to ibuprofen. Name the reagent and state the conditions for this reaction. | | | | | | (2) | | | | **6.** Hydrogen sulphide, H₂S, is partially decomposed when heated. $$2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$$ $$\Delta H = +170 \text{ kJ mol}^{-1}$$ - $0.500\,\text{mol}$ of gaseous H_2S were placed in a flask of volume $20.0\,\text{dm}^3$ and heated until equilibrium was reached. - (a) Write an expression for the equilibrium constant, K_c , for this reaction. **(1)** (b) When equilibrium was established, there were 0.350 moles of hydrogen sulphide in the flask. Calculate the value of K_c at this temperature **to two significant figures**. State its units. **(5)** | (d) | State the effect, if any, on the value of K_c of: | (3) | |-----|---|--------------------| | | (i) adding a catalyst, | | | | (ii) increasing the temperature. | (1) | | | | | | | | (1)
l 11 marks) | | | TOTAL FOR PAPER: 7 END | 75 MARKS | | | | | | | | | | THE PERIODIC TABLE Group 3 4 5 6 7 0 | Key Molar mass g mol ⁻¹ Symbol 4 He Helium 2 | 12 | S | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 93 96 99 101 103 106 108 112 Nb Mo Tc Ru Rh Pd Ag Cd Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium 41 42 43 44 45 46 47 48 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | |--|---|---------------------------|--------------------------------|---|---|---|--------|---|--| | THE PERIODIC TABL | Key Molar mass g mol ⁻¹ Symbol | Name
Atomic number | | S1 S2 S5 S6 S9 S9 S0 S9 S0 S0 S0 S0 | 96 99 101 103 Mo Tc Ru Rh 101ybdenum Technetium Ruthenium Rhodium 42 43 44 45 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 150 152 | 238 (237) (242) U Np Pu | | 1 2
Period | 1 H
Hydrogen | 2 Li Be Lithium Beryllium | 3 Na Mg Sodium Magnesium 11 12 | 40 45 Ca Scandium 20 21 | Sr Y Strontium Yttrium 38 39 | La Lanthanum 57 | Radium | | |