Centre No.			Paper Reference					Surname	Initial(s)		
Candidate No.			6	2	4	1	/	0	1	Signature	

Paper Reference(s)

6241/01 **Edexcel GCE Chemistry**

Advanced Subsidiary

Unit Test 1

Wednesday 7 June 2006 - Morning

Time: 1 hour

Materials required for examination	Items included with question pape					
Nil	Nil					

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and

Answer **ALL** the questions. Write your answers in the spaces provided in this question paper. Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 60. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 12 pages in this question paper. All blank pages are

A Periodic Table is printed on the back cover of this question paper.

You may use a calculator.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

is publication may be reproduced only in accordance with

N22199A W850/R6241/57570 7/7/7/6/23,000

	Question Number	Leave Blank
	1	
	2	
	3	
	4	
	5	
•		
	Total	

Turn over

Leave blank

(1)

Answer ALL the questions. Write your answers in the spaces provided. 1. (a) Complete the electron configuration for carbon. 1s²..... **(1)** (b) Explain how successive ionisation energy data could be used to confirm that carbon is in Group 4 of the Periodic Table. (c) Draw a dot and cross diagram for a molecule of carbon tetrachloride, CCl₄, showing outer electrons only. **(2)** (d) Explain how the following are achieved in a mass spectrometer. (i) Ionisation **(2)** (ii) Deflection

	(3)
(ii)	Carbon consists of the isotopes ¹² C, ¹³ C and ¹⁴ C. Chlorine consists of the isotopes ³⁵ Cl and ³⁷ Cl.
	Use this data to calculate the maximum relative molecular mass of a molecule of carbon tetrachloride, CCl ₄ .
	(1)
(iii	Explain, in terms of sub-atomic particles, the meaning of the term isotopes .
(, 2pram, in terms of our atomic particles, the incaming of the term isotopes.
	(2)
(iv	
(iv	(2)
(iv	(2)
(iv	(2) Why do isotopes of the same element have the same chemical properties?
(iv	Why do isotopes of the same element have the same chemical properties? (1)

(-) ·	Madagas and males (athorns) and hadd beaders and and
(a) 1	Methane and poly(ethene) are both hydrocarbons.
((i) State the type of bond between carbon and hydrogen atoms in the molecules of both compounds.
	(1)
((ii) State the type of intermolecular force present in both compounds.
	(1)
((iii) Explain why poly(ethene) melts at a higher temperature than methane.
(b)]	Explain, in terms of its bonding, why magnesium has a high melting temperature.
	(2)

,			Leave blank
	(c)	State the type of bonding present in sodium chloride. Draw a diagram to show its three-dimensional structure.	
		Type of bonding	
		Diagram	
		(3)	Q2
		(Total 10 marks)	

()	E1	
(a)	Flai	me tests were performed on the following compounds of calcium and sodium.
	(i)	State the flame colour in each case:
		calcium hydroxide
		sodium hydroxide
		(2)
	(ii)	Explain the origin of the colours obtained in flame tests.
		(3)
(b)	Wr	ite an equation for each of the following reactions:
	(i)	Sodium with water
		(1)
		(1)
	(ii)	Sodium oxide with water.
		(1)

(c) Give TWO changes you would see when		Leave blank
	(2)	
(d) Potassium reacts with oxygen to give po	tassium superoxide.	
Give the formula of potassium superoxid	le.	
	(1)	Q3
	(Total 10 marks)	

	1
Leave	
blank	

4.	(a)	Sodium	iodide	reacts	with	chlorine	to	produce	sodium	chloride	and iodine	
----	-----	--------	--------	--------	------	----------	----	---------	--------	----------	------------	--

(i)	State the	oxidation	numbers	of	the	iodine	and	chlorine	species	in	the	spaces
	provided.											

$$2NaI + Cl_2 \rightarrow 2NaCl + I_2$$

(2)

(2)

(ii)	Use these oxidation numbers to explain why this reaction is a redox reaction.

(iii) Calculate the maximum mass of iodine that could be produced from 30.0 g of sodium iodide.

(3)

(iv) Calculate the volume of chlorine gas required to produce this amount of iodine.

[1 mol of gas occupies 24 dm³ under the conditions of the experiment]

(1)

(b)		Give the colour of iodine and its physical state at room temperature and pressure.				
		Colour				
		Physical state				
		(2)				
	(ii)	Write an equation, including state symbols, to represent the process occurring when the first ionisation energy of iodine atoms is measured.				
		(2)				
	(iii)	Explain why the first ionisation energy of iodine is less than that of chlorine.				
		(3)	_			
		(Total 15 marks)				

(a) (i)	Explain why a water molecule does not have a linear shape.
(ii)	(2) State the HOH bond angle in water and explain why it has this value.
	(2)
(b) (i)	Draw the boron trichloride molecule, BCl ₃ , making its shape clear. Mark in the bond angle on your diagram.
	(2)

			(1)
(iii) Exp	olain why a BCl ₃ molecule is n	on-polar.	(1)
			(1)
(iv) Nar	me the strongest intermolecular	r force between boron trich	nloride molecules.
			(1)
			` '
A compo	ound of phosphorus and chloring	ne has the composition by r	
A compo	ound of phosphorus and chloring	ne has the composition by r	
A compo		1	
A compo	Element	% by mass	
	Element P Cl	% by mass 14.9 85.1	
	Element P	% by mass 14.9 85.1	
	Element P Cl	% by mass 14.9 85.1	
	Element P Cl	% by mass 14.9 85.1	
	Element P Cl	% by mass 14.9 85.1	
	Element P Cl	% by mass 14.9 85.1	
	Element P Cl	% by mass 14.9 85.1	

0	$\begin{array}{c} 4\\ He\\ Helium\\ 2 \end{array}$	$\overset{20}{\overset{Neon}{\overset{Neon}{\overset{No}{\overset{N}{N$	Argon 18 84 Krypton 36	Xenon S4	Radon 86			
L		19 Fluorine 9 35.5 CI	Dr. Bromine	127 I lodine 53	At Astatine 85		$\mathop{Lu}_{\text{Lutetium}}^{175}$	(257)
9		16 O Oxygen 8 8 S	Selenium	128 Tellurium 52	Polonium 84		Yb Ytterbium	(254) No Nobelium 102
w		Nitrogen 7 7 7 114	Arsenic 33	Sb Antimony	Bismuth 83		Tm Thulium	(256) Mendelevium 101
4		C Carbon 6 6 Si	Germanium	Sn Tin	Pb Lead		167 Erbium	(253) Fm Fermium 100
m		Boron 5			T1 Thallium		165 H0 Holmium 67	(254) Essteinium
			65.4 Zinc 30	Cd Cadmium 48	Hg Mercury		163 Dy Dysprosium H 66	(251) Cf Californium 98
			63.5 Cu Copper 29	Ag Silver	Au Gold		159 Tb Terbium	Berkelium
अ			S9 Nickel 28	106 Pd Palladium 46	Pt Platinum		157 Gd Gadolinium 64	Cm Curium 96
PERIODIC TABLE Group	-		S9 Cobalt 27	Rhodium	ء		152 Europium 63	(243) Am Americium 95
RIODIC	Key Molar mass g mol ⁻¹ Symbol	Atomic number	56 $^{\rm Fe}$ $^{\rm Iron}$		- 0 1		Smarium 62	Pu Plutonium 94
	Molar	Atom	55 Mn Manganese 25	TC Technetium R 43	Re Rhenium		(147) Pm Promethium 61	Neptunium 1937
THE			$\sum_{\text{Chromium}}^{52}$		- 		Pr Nd Praeodymium Neodymium 59 60	238 U Uranium 92
			51 V Vanadium 23	93 Niobium 41	Ta Tantalum		Praseodymium	Protactinium 91
			48 Titanium 22	2r Zirconium 40	· ' =		Cerium 58	Th Thorium
			Sc	89 Y Yttrium 39	Lanthanum	Actinium 89		
74		$\begin{array}{c} 9 \\ \mathbf{Be} \\ \mathbf{Beryllium} \\ 4 \\ \mathbf{Mg} \\ \mathbf{Mg} \end{array}$	Calcium		· · 🛱 📗	Radium 88		
-	1 H Hydrogen	Lithium 3 23 Na Sodium	39 K Potassium	Rubidium S	CS Caesium 55	Francium 87		
Period		2 %	4	w	9	7		

