GCE Edexcel GCE Chemistry (6243/02) January 2006 advancing learning, changing lives Mark Scheme (Results) | 1 | | | um hydroxide / Ca(OH) ₂ (1)
mewater | | | | | |---|--|---|---|-----------------|--|--|--| | | Q is | Q is (potassium) chromate((VI))/dichromate ((VI))/K ₂ CrO ₄ /CrO ₄ ²⁻ (1) | | | | | | | | R is silver nitrate/ AgNO ₃ (1) | | | | | | | | | S is | S is zinc/Zn <i>OR</i> aluminium/Al <i>OR</i> Devarda's Alloy (1) | | | | | | | | | (Total 4 marks | | | | | | | 2 | (a) | (i) | Cations (2) Ca^{2+} Sr^{2+} Ba^{2+} Ra^{2+} Any two, max (1) if two correct names given $Anion (1)$ NO_3^- | | | | | | | | | NOT name | (3 marks) | | | | | | | (ii) | If charges omitted penalise only once NO ₂ / nitrogen dioxide | (1 mark) | | | | | | (b) | | Flame test (1) | | | | | | | | | Observation Inference Red/Scarlet/ Crimson Sr ²⁺ Green/ apple-green/ yellow-green Ba ²⁺ Brick red/yellow-red/orange-red Ca ² Deep red/dark red Ra ²⁺ If comparison of Ca ²⁺ etc. with Ba ²⁺ , any 'red' colour is acceptable OR to distinguish between Ca ²⁺ and either of Sr ²⁺ or Ba ²⁺ test: add NaOH(aq) (1) Obs no ppt no ppt white ppt with excess Inf Sr ²⁺ Ba ²⁺ Ca ²⁺ (2) | (3 marks) | | | | | | | | Mark consequently on group 2 ions in (a)(i) | | | | | | | | | | (Total 7 marks) | | | | | | | | (Total 7 marks) | |---|-----|---|-----------------| | | | CH ₂ = CHCH ₃ (1) double bond must be shown - stand alone OR full structural formulae | (3 marks) | | | | $CH_3CH_2CH_2OH$ OR $CH_3CH(OH)CH_3$ (1)
The alcohol must follow from the halogenoalkane in terms of 1° / 2° | | | | (e) | CH ₃ CH ₂ CH ₂ Br OR CH ₃ CHBrCH ₃
OR CH ₃ CH ₂ CH ₂ X OR CH ₃ CHXCH ₃ (1) | | | | (d) | C=C/carbon-carbon double bond
ALLOW alkene | (1 mark) | | | (c) | OH/hydroxyl group/alcohol NOT hydroxide | (1 mark) | | | (b) | KOH / NaOH <i>OR</i> words ALLOW OH ⁻ IGNORE references to solvent | (1 mark) | | 3 | (a) | Bromine/Br NOT bromide / Br ⁻ NOT Br ₂ | (1 mark) | | 4 | (a) | Two | interse | cting straigh | t lines through da | ata | | (1 mark) | |---|-----|--|--|-----------------------|--------------------------------------|----------|----------------------|-----------------------------------| | | (b) | (i) | 27.0 | cm ³ ALLOW | ± 1.0 cm ³ | | | (1 mark) | | | | (ii) | 9.3 ± | ± 0.5 ° C | | | | (1 mark) | | | (c) | (i) | (b)(i) x 2
1000
ALLOW correct answer with no working | | | | (1 mark) | | | | | (ii) | (c)(i) | | | | | (1 mark) | | | | (iii) | (iii) (c)(ii) x 1000 (1) 50 Correct answer - see table below (1) | | | | | | | | (d) | (i) | x 4.2 | | calculation to sc | | | | | | | | If the units are given, they must be correct | | | | (2 marks) | | | | | (ii) $\Delta H = -\frac{(d)(i)}{0.05 \text{ x (c)(iii)}}$ = answer plus units
sign (1) numerical answer, using candidate's figures, to 2 or 3 s.f. (1) kJ mol ⁻¹ (1) can be in J or KJ | | | | | (3 marks) | | | | | Table | e of ans | | | | 1 | | | | | |)(i) | (b)(ii) | (c)(i) & (ii) | (c)(iii) | (d)(i)
/ kJ | (d)(ii)
/ kJ mol ⁻¹ | | | | 26.0
26.5
27.0 | | 9.4
9.6 | 0.052 | 1.04 | 3.00
3.06 | - 57.7
- 58.8 | | | | | | 9.4
9.6
9.4 | 0.053 | 1.06 | 3.02
3.08
3.04 | - 57.0
- 58.1
- 56.3 | | | | | | 9.6 | | | 3.10 | - 57.4 | | | (e) | OR p | | orimeter) in | oolystyrene) cup
a (glass) beaker | | | (1 mark) | | | | | | | | | | (Total 13 marks) | | 5 | (a) | (i) | Reaction takes time OR reaction is slow / activation energy is high OR to speed up the reaction / supplies activation energy | | |---|-----|------------------|---|-----------------| | | | | Answer could be covered in (ii) allow mark provided the answer in (i) is sensible. | (1 mark) | | | | (ii) | (Without a reflux condenser the volatile) substances/the ester could be boiled off. | (1 mark) | | | (b) | ALLO | flask and any source of heat (1) OW "Heat" k must be connected to the rest of the apparatus | | | | | <i>ALL</i> verti | | | | | | wate
appa | (4 marks) | | | | (c) | (i) | To convert it into benzoic acid OR to liberate the acid (from the salt) OR a description of the chemistry | (1 mark) | | | 1 | (ii) | Because the acid is soluble in hot water OR the acid is insoluble in cold water OR to crystallise out the acid | (1 mark) | | | (d) | (i) | Amount of ester = $4.5 \div 150 = 0.03$ (mol) (1)
Amount of product = $2.93 \div 122 = 0.024$ (mol) (1)
% yield = $0.024 \times 100 = 80$ % (1)
0.03 OR
$150 \text{ g ester} \Rightarrow 122 \text{ g acid}$ (1) 4.5 g $\Rightarrow 4.5 \times 1.27 = 3.66 \text{ g}$ (1)
$2.93 \times 100 = 80$ % (1) | | | | | | 3.66
2.93 x 100 (0)
4.5 | (3 marks) | | | | (ii) | Lowered because more stays in solution OR Lowered because some stays in solution | (1 mark) | | | (e) | PCI ₅ | reacts with water | (1 mark) | | | | | (** | Total 14 marks) | | 6 | Heat solids | OR | | | | | |-----|---|---|--------------|--|--|--| | QWC | No brown gas/NO ₂ – RbNO ₃ (1) | Make solution (in water) (1) | | | | | | | Brown gas/ NO_2 – LiNO ₃ or Sr(NO_3) ₂ (1) | Add solution of NaOH / Na ₂ SO ₄ / Na ₂ CO ₃ / H ₂ SO ₄ (1) | | | | | | | Make solution (in water) (1) | (White) ppt – Sr(NO ₃) (1) | | | | | | | Add solution of NaOH / Na ₂ SO ₄ / Na ₂ CO ₃ H ₂ SO ₄ (1) | No ppt with other two (1) | | | | | | | (White) ppt means Sr(NO ₃) (1)
No ppt, LiNO ₃ (1) | Heat other two LiNO ₃ \rightarrow O ₂ +NO ₂ (1) RbNO ₃ \rightarrow O ₂ only (1) | (6 marks) | | | | | | ALLOW marks for correct tests for strontium and lithium if water omitted (max 5) | | | | | | | | "Make solution" mark is stand alone provided what follows makes some sense. If suggest heat and measure time for O_2 to be produced (max 2) Equations can score action of heat marks. | There is no mark for describing the test for oxygen. QWC Plan must be a process of elimination. If candidate assumes they know which is which and then prove it correctly (max 5) | | | | | | | | | | | | | | | | | (То | tal 6 marks) | | | | | | TOTAL FOR PAPER: 50 MARKS | | | | | |