Centre No.					Pape	er Refer	ence			Surname		Initial(s)
Candidate No.			6	2	4	6	/	0	2	Signature		
	paper Reference(s										Exami	ner's use only
	Ede	exc	el	G	C	E					Team L	eader's use only

Chemistry

Advanced

Unit Test 6B (Synoptic)

Tuesday 28 June 2005 – Morning

Time: 1 hour 30 minutes

aterials required for examination	Items included with question paper
1	Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Answer **ALL** questions in Section A in the spaces provided in this question paper.

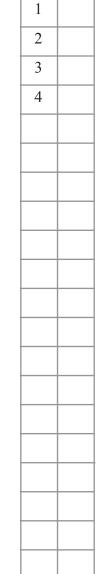
Answer **TWO** questions in Section B in the spaces provided in this question paper. Indicate which question you are answering by marking the box (X). If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new question with a cross (\boxtimes) .

You may use a calculator. Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 50. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 12 pages in this question paper. All blank pages are indicated.

A Periodic Table is printed on the back cover of this question paper.


Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. You will be assessed on your Quality of Written Communication in this paper.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2005 Edexcel Limited.

Team Leader's use only

edexcel ...

Turn over

Leave

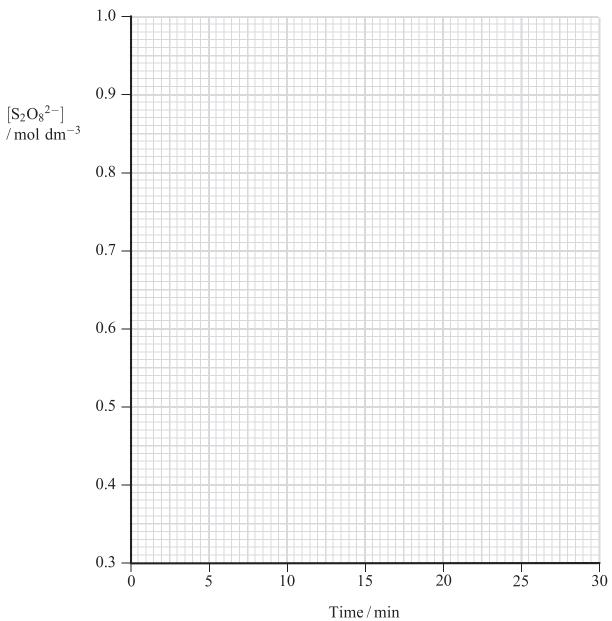
SECTION A

Answer ALL parts of this question in the spaces provided.

1. Persulphate ions, $S_2O_8^{2-}$ slowly oxidise arsenic(III) acid, H_3AsO_3 in aqueous solution according to the equation

$$S_2O_8^{2-} + H_3AsO_3 + H_2O \rightarrow 2SO_4^{2-} + H_3AsO_4 + 2H^+$$

- 25 cm³ of a 1.0 mol dm⁻³ solution of potassium persulphate was mixed with 25 cm³ of a solution of arsenic(III) acid of the same concentration.
- At timed intervals, small portions of the reaction mixture were analysed to determine the concentration of persulphate ion, $[S_2O_8^{2-}]$.


The results are shown below.

Time / minutes	$[S_2O_8^{2-}]$ /mol dm ⁻³
0	1.0
5	0.76
10	0.62
15	0.52
20	0.44
30	0.35

Leave blank

(a) (i) On the grid below, plot a graph of the concentration of persulphate ions against time.

(ii) Draw a tangent to the curve at the point where $[S_2O_8^{2-}] = 0.50 \text{ mol dm}^{-3}$ and use it to calculate the slope of the curve at that point. Give your answer to **two** significant figures.

Slope:	

(4)

(2)

Leav blan	
concentration of reactant can be measured from ration.	(b) The rate of the reaction at the slope of the graph at t
when the concentrations of persulphate ions, O ₃ , are both 1.0 mol dm ⁻³ , was found to be	
w that the ratio of the initial rate to the rate when nol dm ⁻³ is approximately 4:1. Use this ratio to ion.	
(3)	
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)
t agree with the order of the reaction that you ald the experiment be adapted to distinguish	have deduced in (i)

N 1 7 0 8 6 A 0 4 1 2

Leave blank

SECTION B

Answer any TWO questions from this section in the spaces provided.

C113CC		d, CH ₃ CH=CHCOOH, ca OH in a three step synthesis.	n be	converted into 3-oxobutanoic acid
	Step 1	CH ₃ CH=CHCOOH	\rightarrow	CH ₃ CHBrCH ₂ COOH
Step 2		CH₃CHBrCH₂COOH	\rightarrow	CH ₃ CH(OH)CH ₂ COOH
	Step 3	CH ₃ CH(OH)CH ₂ COOH	\rightarrow	CH ₃ COCH ₂ COOH
(a) (i)	Identify	the reagents needed for each	h step.	
	Step 1		•••••	
	Step 3			
(ii	 N But-2-e	noic acid exists as two stere	oisome	(4
		nese stereoisomers and expla mperature.	nin wh	y one does not convert to the other a

(h)	Give the structural formula of the organic products of the reaction of
	(i) but-2-enoic acid with an alkaline solution of potassium manganate(VII).
	(ii) 3-oxobutanoic acid with hydrogen cyanide, HCN, in the presence of a trace of hydroxide ions.
(c)	3-oxobutanoic acid is a weak acid. The value of its acid dissociation constant, $K_{\rm a}$, is $2.63\times 10^{-4}{\rm mol}{\rm dm}^{-3}$.
	(i) Give the structural formula of the conjugate base of 3-oxobutanoic acid.
	(1)
	In parts (ii) and (iii) you may use HX as the formula for 3-oxobutanoic acid.
	(ii) Explain how a mixture of 3-oxobutanoic acid and its sodium salt can act as a buffer solution when a small amount of alkali is added.

N 1 7 0 8 6 A 0 6 1 2

(4)

	Leave blank
(iii) Calculate the mass of solid sodium 3-oxobutanoate that must be added to 100 cm^3 of a $0.500 \text{ mol dm}^{-3}$ solution of 3-oxobutanoic acid in order to make a buffer solution of pH 3.80.	
burier solution of pri 5.00.	
(5)	Q2
(Total 18 marks)	

Leave

If you answer Question 3 put a cross in this box \square .

3. (a) Carboxylic acids react reversibly with alcohols, in the presence of a catalyst, to form an ester and water.

When 24.8 g of ethane-1,2-diol, $HOCH_2CH_2OH$, was mixed with 66.0 g of ethanoic acid, CH_3COOH , in the presence of a catalyst, equilibrium was reached after 80.0 % of the ethane-1,2-diol had reacted. The total volume at equilibrium was 90.0 cm³.

$$HOCH_2CH_2OH + 2CH_3COOH \rightleftharpoons CH_3COOCH_2CH_2OOCCH_3 + 2H_2O$$

Write the expression for the equilibrium constant, K_c , and calculate its value. You should make clear what units, if any, there are for K_c .

(7)

(b) Ethane-1,2-diol can be made from ethene in a two-stage process. The overall reaction is:

$$C_2H_4 + H_2O + \frac{1}{2}O_2 \rightarrow HOCH_2CH_2OH$$

1054 g of ethane-1,2-diol was obtained from 560 g of ethene.

Calculate the percentage yield of the process.

(2)

(i) Give the structural formula of a reagent that would react with ethane-1,2-diol to make a polyester. Draw the structure of the polymer made from this reagent and ethane-1,2-diol. (ii) Explain whether it would be sensible for protective clothing, made from this polymer, to be used in an environment where acid spills are likely. (1) Explain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling temperature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a lower boiling temperature than propanoic acid, C ₂ H ₂ COOH.	2)	Poly	resters can be formed from compounds with two functional groups.
 (ii) Explain whether it would be sensible for protective clothing, made from this polymer, to be used in an environment where acid spills are likely. (1) Explain why the ester methyl methanoate, HCOOCH₃, has a much lower boiling temperature than its isomer ethanoic acid, CH₃COOH, and why ethanoic acid has a lower boiling temperature than propanoic acid, C₂H₅COOH. 	(make a polyester. Draw the structure of the polymer made from this reagent and
polymer, to be used in an environment where acid spills are likely. (1) Explain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling temperature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a lower boiling temperature than propanoic acid, C ₂ H ₅ COOH.			(3)
Explain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling temperature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a lower boiling temperature than propanoic acid, C ₂ H ₅ COOH.	(polymer, to be used in an environment where acid spills are likely.
Explain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling temperature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a lower boiling temperature than propanoic acid, C ₂ H ₅ COOH.			
	15.		
	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.
	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.
	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.
	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.
	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.
	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.
	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.
(5)	1	temp lowe	lain why the ester methyl methanoate, HCOOCH ₃ , has a much lower boiling perature than its isomer ethanoic acid, CH ₃ COOH, and why ethanoic acid has a per boiling temperature than propanoic acid, C ₂ H ₅ COOH.

Leave blank

If you answer Question 4 put a cross in this box
--

4. (a) (i) Draw a labelled Hess's Law cycle for the dissolving of solid calcium hydroxide in water, and use it and the data below to calculate the lattice energy of calcium hydroxide.

 $\Delta H/\mathrm{kJ}\,\mathrm{mol}^{-1}$

Enthalpy of hydration of $Ca^{2+}(g)$ -1650Enthalpy of hydration of $OH^{-}(g)$ -460

Enthalpy of solution of $Ca(OH)_2(s)$ -16.2

(ii) State and explain the trend in solubility in water of the Group 2 hydroxides.

(4)

	$Ca(OH)_2(s) + (aq) \rightleftharpoons Ca^{2+}(aq) + 2OH^-(aq)$ $\Delta H^{\ominus} = -16.2 \text{ kJ mol}^{-1}$	
	State and explain the effect on the solubility of calcium hydroxide of	
	(i) increasing the temperature	
		•••••
		(3)
	(ii) adding sodium hydroxide solution.	
		(3)
(c)	When concentrated sulphuric acid is added to solid calcium chloride, one acidic is given off.	(3) gas
(c)		gas
(c)	is given off. When concentrated sulphuric acid is added to solid calcium bromide, three gases	gas
(c)	is given off. When concentrated sulphuric acid is added to solid calcium bromide, three gases given off. Identify the three gases given off in the reaction with calcium bromide. Explain v	gas
(c)	is given off. When concentrated sulphuric acid is added to solid calcium bromide, three gases given off. Identify the three gases given off in the reaction with calcium bromide. Explain v	gas
(c)	is given off. When concentrated sulphuric acid is added to solid calcium bromide, three gases given off. Identify the three gases given off in the reaction with calcium bromide. Explain v	gas
(c)	is given off. When concentrated sulphuric acid is added to solid calcium bromide, three gases given off. Identify the three gases given off in the reaction with calcium bromide. Explain v	gas
(c)	is given off. When concentrated sulphuric acid is added to solid calcium bromide, three gases given off. Identify the three gases given off in the reaction with calcium bromide. Explain v	gas
(c)	is given off. When concentrated sulphuric acid is added to solid calcium bromide, three gases given off. Identify the three gases given off in the reaction with calcium bromide. Explain v	gas

END

0	$\begin{array}{c} 4 \\ Helium \\ Helium \\ 2 \\ Neon \\ Neon \\ 10 \\ 10 \\ Ar \\ Argon \\ Argon \\ 18 \end{array}$	Krypton 36	
1	Fluorine 9 35.5 Chlorine	Bromine Bromine 35 127 I I lodine 53 53 At Astatine 85	$\begin{array}{c} 175 \\ Lu \\ Lutetium \\ 71 \\ \hline 71 \\ \hline 1 \\ Lawrencium \\ 103 \end{array}$
9	16 Oxygen 8 8 8 8 Suphur	Selenium Selenium 34 128 Te Tellurium 52 210 Polonium 84	173 Yterbium 70 70 Nobelium 102
w	Nitrogen Nitrogen Phosphorus	AS Arsenic 33 122 Sb Antimony 51 209 Bi Bismuth 83	Tm Thulium 69 (256) Md Mendelevium
4	Carbon Carbon 6 Silicon Silicon 14	Germanium 32 119 Sn Tin 50 207 Pb Lead 82	167 Er Erbium 68 (253) Fm Fermium
m	Boron 5 27 Alminitium 13	Gallium 31 115 In Indium 49 204 T T Thallium 81	163 165 Dysprosium Holmium 66 67 (251) (254) Cf Es Californium Einsteinium 98 99
		Cd Cadmium 48	Dy Dysprosium 66 (251) Cf Californium 98
		Copper 29 Silver 47 197 AB AB Cold AD	Terbium 65 65 65 BK Berkelium 97
A.		$\begin{array}{c} 59 \\ Ni \\ Nickel \\ 28 \\ 106 \\ Pd \\ Palladium \\ 46 \\ 46 \\ 195 \\ Pt \\ Patinum \\ 78 \\ \end{array}$	157 Gadolinium 64 Gadolinium 64 Carolinium 96
THE PERIODIC TABLE Group	7_	Cobalt 27 103 Rh Rhodium 45 172 192 192 Iridium 77 77	Europium 63 Am Americium 95
Group	Key Molar mass g mol ⁻¹ Symbol Name Atomic number	$\begin{array}{c} 56\\ Fe\\ \text{Iron}\\ 26\\ 101\\ Ru\\ \text{Ruthenium}\\ 44\\ 44\\ 190\\ Os\\ Os\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Sm Smarium 62 (242) Pu Pultonium ,
FEK G	Molar	Manganese 25 99 TC n Technetium 43 186 Re Rhenium 75	141
		52 Cr Chromium 24 96 Molybdenum 42 184 W Tungsten 74	144 Nd icodymiu 60 60 Uranium 92
		V Vanadium 23 93 Niobium 41 181 Ta Tantalum 73	
		48 Titanium 22 91 Zirconium 40 178 Hf Haftnium 72	Cerium Sas 232 Thorium 90
		Sc Sc Sc Sc Sc Sc Sc Sc	Actinium 89
8	Ma M	Calcium Calcium 12	Radium 88
-	H I I	Rebidium The state of the stat	Francium 87
Como	2 8	4 N O L	

