Unit Test 6241

(a) (i) Idea of **impact** with **energy**fast electrons strike sample/ high energy/accelerated electrons
/electrons fired at sample/ sample bombarded with /blasted with
electrons from electron gun (1)

Removes an electron/ knock out electrons/ eqn $X \rightarrow X^+ + e^-$ (1) (2 marks)

(ii) magnetic field /magnet / electromagnet NOT charged plates ALLOW magnetic plates

(1 mark)

(b) (60.4 x 69) + (39.6 x 71) / 60.4 + 39.6 (1) = 69.8 (1)

69.792 scores 1 (out of 2)

(2 marks)

(c) (i) B (1) mass no. 10 (1) OR 10 B / B 10 (2)

If + is added max (1) ie for mass number

(2 marks)

(ii) ..2s²2p¹

(1 mark)

(1 mark)

(iii) BCl₃
If an equation for formation of BCl₃ is given, look for BCl₃ and ignore rest

(Total 9 Marks)

```
ALLOW 3 or 4 sig figs - penalise once only
(a)
      (i)
            MUST be some working
            moles P = 93/31 = 3.0 (1)
            moles PCl<sub>3</sub> also = 3.0 (1)
            mass PCl_3 = 137.5 \times 3.0 = 412.5 / 413 (g) (1)
            OR alternative route
            Max 2 if wrong units
                                                                                              (3 marks)
           moles Cl_2 = 3/2 \times 3 = 4.5 (1)
      (ii)
            volume of Cl_2 = 4.5 \times 24 = 108 \text{ (dm}^3) (1) - consequential on 1<sup>st</sup> mark
                                                                                              (2 marks)
      (iii)
            Cl<sub>2</sub> with attempt at reason (1)
            because gains electrons / ox. no. becomes more negative / oxidation
            number decreases / 0 \rightarrow -1
            OR
            P loses electrons / oxidation number increases / 0 \rightarrow +3 (1)
                                                                                              (2 marks)
(b)
           Outer shell of P in a molecule (1)
            CI lone pairs / six more electrons around each CI (1)
            Lone pair must be in the same space.
                                                                                              (2 marks)
      (ii)
            Trigonal pyramidal diag. (1)
            Must be some attempt to show 3-D. A poor diagram can be rescued by
            a correct name.
            100 – 108° (1) NOT consequential
                                                                                              (2 marks)
(c)
            Tetrahedral
                                                                                               (1 mark)
                                                                                       (Total 12 Marks)
```

2

3 bonding: (giant) covalent (1) (a) Diag. shows at least 5 carbon atoms correctly joined (1) plus a hexagonal ring (1) (3 marks) Must NOT be graphite bonding: ionic (1) shows alternating Na⁺ and Cl⁻ ions OR a key (1) More than one layer (1) ALLOW correct unit cube for NaCl (2) (3 marks) ALLOW 1 mark for single layer with at least 6 ions (b) Diamond: macromolecular/giant covalent structure/ many covalent bonds to break (1) NaCl: attraction between oppositely charged ions to be overcome (1) both require large amount of energy to break bonds/overcome attractions (1) (3 marks) - stand alone mark (c) ions mobîle (in molten) / can move (1) NOT "free" on its own fixed positions in solid / cannot move (1) (2 marks) Max 1 if only one ion mentioned eg Na⁺

(Total 11 Marks)

6 (a) Iodine/ I2 OR astatine/At2 (1 mark) Bromine/Br₂ (1 mark) Chlorine/Cl2 OR fluorine/F2 If halides given max 2 If symbols for atoms given max 2 If symbols for ions given 0 (1 mark) (b) lons produced (1) (i) to which H₂O bonds /become hydrated (1) (2 marks) (ii) H⁺ formed (in solution) / H₃O⁺ (1 mark) (c) hydrogen bonding in HF (1) – stand alone stronger than vdW/dipole-dipole/dispersion forces in HI (1) - must be an identified intermolecular force NOT "HI does not have hydrogen bonding" (2 marks) (d) +1, +5 / 1+, 5+ / I, V (2) 1, 5 (1) -1, -5 (0)Superscript pluses penalised once eg Cl⁺, Cl⁵⁺ (1) BUT Cl⁺, Cl³⁺ (0) ie two errors (2 marks)

(Total 10 Marks)

Unit Test 6242

1. (a) hydrogen (1) (2 marks)

(b) anode: titanium (1) cathode: steel (1)

(2 marks)

(c) Anode: $2Cl^- \rightarrow Cl_2 + 2e^-$ (1) or half this

(2 marks)

Cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^- / 2H^+ + 2e^- \rightarrow H_2$ (1) or half them There is no need for the minus sign on the electrons

Max 1 if equations linked to wrong electrodes

- Manufacture of solvents / PVC / insecticides / herbicides / bleach / organo-chlorides
 - · As a bleach of textiles or paper

(1 mark)

Water supply treatment (not swimming pools, not purification of water)
 Any one (1)

(Total 7 Marks)

2. (a) (i) $CH_4 + CI_2 \rightarrow CH_3CI + HCI (1)$

(1 mark)

(ii) UV (radiation) / Sunlight (1) Not light

(1 mark)

(b) (i)

$$H_3C$$
 $C=C$ CI

$$C = C$$

(1)

1₃C

(2 marks)

(ii) restricted rotation around double bond (1)

Allow no rotation at room temperature

two different groups on each double bonded carbon (1)

(2 marks)

(iii) 2,3-dichlorobutane (1)

(1 mark)

(Total 7 Marks)

(2 marks)

(Total 14 Marks)

 $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$ (1)

fertiliser (1)

(c)

nucleophilic substitution (1) 4. (a) (i) (2 marks) aqueous (1) Ignore heat under reflux here Allow aqueous ethanol elimination (1) (ii) ethanolic / alcoholic (1) heat (under reflux) (1) not h.u.r., not warm (3 marks) (b) (i) $nCH_2=CHCI \longrightarrow (CH_2CHCI)_n$ n's (1) must balance structure of product clearly shown with continuation bonds (1) (2 marks) (ii) Electrical insulation / water pipes / guttering / window frames / flooring/ specified clothing (1) Do not allow buckets, bottles etc (1 mark) (iii) Either Remain in landfill sites (1) not biodegradable / strong C-Cl bond (1) (both are stand-alone marks) If incinerated (1) produce toxic fumes (1) (consequential on incineration) if specified, must be correct eg HCl or dioxins, not chlorine (2 marks) (c) 61.0/12 15.3/1 23.7/14 i.e. divide by A_r (1) 5.08/1.69 15.3/1.69 1.69/1.69 i.e. divide by 1.69 to give 3:9:1 (1) % C,H and N calculated from given formula (1) which are the same as the data (1) (2 marks) Ammonia (1) (Not formula) (ii) $CH_3CHBrCH_3 + 2NH_3 \rightarrow CH_3CH(NH_2)CH_3/C_3H_9N + NH_4Br$ Organic species (1) (consequential on reasonably correct reagent) balancing of equation as above (1) (3 marks) (iii)

(1 mark)

(Total 16 Marks)

All bonds must be shown

Unit Test 6243/02

1 (a) Only penalise S.F in 2(c) and 3 (a) (iii), if necessary. Penalise an incorrect unit once on the paper.

Penalise additional incorrect observations or gases.

Sodium chloride - Yellow/orange (1)

Potassium chloride - Lilac allow purple/mauve/violet (1)

(2 marks)

(b) Potassium sulphate - White precipitate (1)

Potassium sulphite - No precipitate/no change/no reaction/pungent gas/choking gas/gas turns acidified potassium dichromate from orange to green (1) Sulphur dioxide alone (0)

(2 marks)

(c) Ammonium sulphate – (Red) litmus turns blue (1) Ammonia/ allow NH₃ (1)

Potassium sulphate - Litmus stays red/no change/no reaction/no gas evolved (1) (3 marks)

(d) Sodium chloride – hydrogen chloride/allow HCI (1)

Misty/steamy/cloudy fumes/effervesence/litmus turns

red (1)

If litmus bleached (0) for observation. White fumes alone (0) for observation

Sodium bromide – bromine/hydrogen bromide/sulphur dioxide /allow Br₂/

HBr/SO₂ (1)

Brown/orange fumes/liquid/solution (1)

Not red on its own

Effervescence/litmus turns red/steamy fumes/litmus is slowly

bleached. (1)

(5 marks)

(Total 12 Marks)

2	(a)	QWC P Pipette mark:	use of a (25cm ³) pipette for ethanedioic acid	√P	
		201 T B 100		-	
		I Indicator mark:	add a few drops of phenolphthalein to conical t	flask ✓ I	
		T Technique mark:	add alkali to acid with swirling/allow shaking/mixing/magnetic stirrer but not stirring /drop by drop/slowly (near end point) /rinse out the pipette with acid /use of a white tile /read from bottom of meniscus /touch tip of pipette on side of flask /rinse flask with distilled water do not award this mark if the flask is rinsed w	√T	
		V Volume mark:	note(initial and)final volumes of alkali	✓ V	
		E End point mark:	colour change – (colourless to pale) pink /first permanent pink colour (not purple)	√E	
		C consistency mark	k: repeat until titres are within 0.05-0.2(cm ³) of each other		
			/repeat until concordant/consistent results not just repeat x times	√C	(6 marks)
	(b)	(i) <u>25</u> X 0.0500 1000) = 0.00125		(1 mark)
		(ii) Answer to (i) x	2 = 0.00250 mark consequentially		(1 mark)
		(iii) Answer to (ii)	25.50 = 0.0980 mark consequentially		(1 mark)
	(c)		= correct answer to 3SF (1) 1.58(g) if use 126 1.13(g) if use 90		(3 marks)
	(d)	Volume NaOH increased Solution of ethanedic	ases (1) oic acid is more concentrated (1)		(2 marks)
	(Total 14 Marks)				

(Total 9 Marks)