Centre No.			Paper Reference Surname					Surname	Initial(s)		
Candidate No.		6	2	4	4	/	0	1	Signature		
	Paper References 6244									Examiner's use only	

Edexcel GCE Chemistry

Advanced Level

Unit Test 4

Friday 23 January 2004 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination Items included with question papers

Instructions	to	Can	did	ates
--------------	----	-----	-----	------

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Answer ALL the questions in the spaces provided in this question paper. You may use a calculator.

Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 75. The marks for the various parts of questions are shown in round brackets: e.g. (2).

A Periodic Table is printed on the back cover of this booklet.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

 $\stackrel{\text{Printer's Log. No.}}{N16451A}$

Turn over

Total

Team Leader's use only

Ouestion

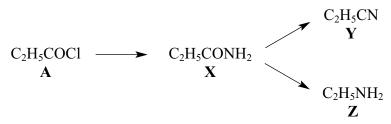
Number

2

3

4

5


Leave

Blank

Answer ALL questions in the spaces provided.

1.		Aluminium and sulphur are elements in the third period of the Periodic Table. They both burn when heated in oxygen.						
	(a)		e the equations for the reactions of these elements with oxygen. State the type of ding present in the oxides formed.					
		(i)	Aluminium					
			Equation					
			Type of bonding(2)					
		(ii)	Sulphur					
			Equation					
			Type of bonding					
			(2)					
	(b)		e oxides produced have different acid/base properties. State these properties, strating your answers with suitable ionic equations.					
		(i)	Aluminium oxide					
			Acid/base nature					
			Ionic equations					
			(4)					
		(ii)	Sulphur oxide					
		()						
			Acid/base nature					
			Ionic equation					
			(2)					

(c)	(i)	Phosphorus trichloride, PCl ₃ , is a covalent liquid which reacts rapidly with water. Write the equation for this reaction.	Leave blank
		(2)	
	(ii)	Carbon tetrachloride, CCl ₄ , is also covalently bonded but it does not react with water. Explain why it does not react.	
		(4)	
(d)		and lead also form tetrachlorides, but their reactions as oxidising agents differ. sich of the reactions I or II is likely to take place? Explain your answer.	
		$SnCl_4 + PbCl_2 \rightarrow PbCl_4 + SnCl_2$ $PbCl_4 + SnCl_2 \rightarrow SnCl_4 + PbCl_2$	
	••••		
	••••	(2)	Q1
		(Total 18 marks)	
			1

(i)	Name compound A .	
		(1)
(ii)	Identify the reagent needed to convert:	
	A to X	
	X to Y	(2)
(iii)	Identify the reagents and the conditions needed to convert \mathbf{X} to \mathbf{Z} .	
		(3)

- (b) Two of the substances A, X, Y and Z react with cold water to give solutions that are **not** neutral.
 - (i) State which substance reacts with cold water to give a solution with a pH less than 7. Write the equation for this reaction.

 (2)

(ii) State which substance reacts with cold water to give a solution with a pH **greater** than 7. Write the equation for this reaction.

4

(2) Q2

(Total 10 marks)

$$C_{6}H_{11}$$
 $C=C$
 $CH_{2}OH$

(a)	Explain why geraniol exhibits geometric isomerism.
	(2)
(b)	Geraniol can be oxidised to citral, which is the main ingredient of lemon grass oil. Citral's formula can be written as:
	$C_{6}H_{11}$ $C=C$ CHO
	Identify the reagents and suggest conditions necessary for the preparation of citral from geraniol.
	(3)
(c)	State what you would see when citral reacts with:
	(i) bromine dissolved in water;
	(1)
	(ii) a solution of 2,4-dinitrophenylhydrazine;
	(1)
	(iii) Fehling's solution.
	(1

6

(d)	Give the structural formula of the organic product of the reaction of citral with:	Lea blai	
	(i) hydrogen bromide gas;		
	(ii) a solution of hydrogen cyanide, HCN, containing a trace of base;		
	(1)		
	(iii) a solution in ethoxyethane (ether) of methyl magnesium iodide, CH ₃ MgI, followed by dilute acid.		
	(1)	Q	3
	(Total 11 marks)		

١.	(a)	(i)	Define the term enthalpy of atomisation .	Leave blank
			(2)	
		(ii)	Write the equation, with state symbols, which represents the change occurring when the enthalpy of atomisation of chlorine is measured.	
			(1)	

(iii) Draw a Born-Haber cycle and use it to determine the lattice energy of strontium chloride, $SrCl_2(s)$, using the following data:

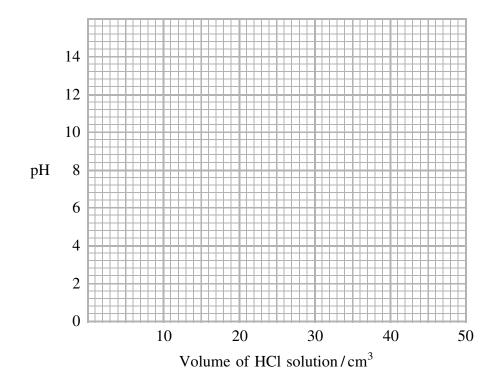
	Enthalpy change/kJ mol ⁻¹
enthalpy of formation of SrCl ₂ (s)	-829
enthalpy of atomisation of strontium	+164
enthalpy of atomisation of chlorine	+122
1st ionisation energy of strontium	+550
2nd ionisation energy of strontium	+1064
electron affinity of chlorine	-349

(b)	cov	fireworks, the thermal decomposition of strontium(II) chloride, SrCl ₂ , gives the alent molecule of strontium(I) chloride, SrCl(g), which is responsible for the red our of the fireworks.	Leave blank
		$SrCl_2(s) \implies SrCl(g) + Cl(g)$ $\Delta H = +737 \text{ kJ mol}^{-1}$	
	(i)	Calculate the enthalpy of formation of $SrCl(g)$ using the ΔH given above, the enthalpy of formation of $SrCl_2(s)$ (-829 kJ mol ⁻¹) and the enthalpy of atomisation of chlorine (+122 kJ mol ⁻¹).	
		(2)	
	(ii)	Explain what would be the effect of a lowering in the temperature of the exploding firework on the value of the equilibrium constant and on the position of this equilibrium.	
		(3)	
	(iii)	Some solid SrCl ₂ was heated at 1500 °C and equilibrium was reached. The total pressure of the gases produced was found to be 4.2 atm.	
		Write the expression for K_p and calculate its value with units.	
		(5)	Q4

(Total 18 marks)

5. (a) Ammonia reacts with water as below:

Leave blank


$$NH_3(aq) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

A 0.100 mol dm⁻³ solution of ammonia has a pH of 11.13.

(i) Identify the Brønsted-Lowry acid/base conjugate pairs in the equation. Clearly label which are acids and which are bases.

(2)

(ii) Draw, on the axes below, a graph to show how the pH of the solution varies as 40 cm^3 of $0.100 \text{ mol dm}^{-3}$ hydrochloric acid (a strong acid) is added slowly to 20 cm^3 of the ammonia solution.

(4)

(iii) Select, from the following list, the indicator which would be the most suitable for this titration. Give a reason for your choice.

Leave blank

Indicator	pK_{ind}	Range
methyl red	5.1	4.2-6.3
bromothymol blue	7.0	6.0-7.6
phenolphthalein	9.3	8.2-10.0

Indicator	··	 	 	 	•••••	
Reason:		 	 	 		
						(2)

(b) Nitrous acid, HNO₂, is a weak acid with an acid dissociation constant $K_a = 4.70 \times 10^{-4} \, \text{mol dm}^{-3}$ at 4 °C.

$$HNO_2(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + NO_2^-(aq)$$

(i) Write the expression for K_a .

(1)

(ii) Calculate the pH of a 0.120 mol dm⁻³ solution of nitrous acid.

(3)

QUESTION 5 CONTINUES ON THE NEXT PAGE

(iii) Calculate the pH of a buffer solution made by adding 1.38 g of sodium nitrite, NaNO ₂ , to 100cm^3 of the 0.120mol dm^{-3} solution of nitrous acid $(K_a = 4.70 \times 10^{-4} \text{mol dm}^{-3})$.	Leave blank
(4)	
(iv) Suggest why a mixture of nitrous acid and sodium nitrite can act as a buffer solution whereas a solution of sodium nitrite on its own does not.	
(2)	Q5
(Total 18 marks)	

TOTAL FOR PAPER: 75 MARKS

END

THE PERIODIC TABLE

	1	7					G	Group					m	4	S	9	7	0
riod																		
	1 H Hydrogen 1						Molar r	Key Molar mass g mol ⁻¹ Symbol										Helium 2
7	$\frac{7}{ ext{Lithium}}$						Atom	Name Atomic number					11 B	12 Carbon	Nitrogen	16 Oxygen	19 F	$\overset{20}{\text{Neon}}$
ю	\sum_{23}^{3} Na Sodium												S 27 Al Aluminium	Silicon	7 31 Phosphorus	Sulphur	35.5 CI Chlorine	Argon
4	39 K Potassium 19	12 40 Ca Calcium 20	Scandium	Ti V Titanium Vanadium 22 23	51 Vanadium 23	S2 S5 Cr Mn Chromium Manganese 24 25	Manganese	56 Fe Iron 26	59 Cobalt 27	Nickel	63.5 Cu Copper	65.4 Zn Zinc 30	Gallium	Germanium	AS Arsenic 33	Selenium	80 Br Bromine	Krypton
v.	$\underset{37}{Rb}$		89 Y Yttrium 39	$\sum_{\substack{\text{Zirconium} 40}}$	$\frac{93}{Nb}$	$\stackrel{96}{ ext{Mo}}$	Tc Technetium	Ruthenium	103 Rh Rhodium	106 Pd Palladium 46	$\mathop{\mathrm{Ag}}_{\mathrm{Silver}}$	Cd Cadmium	I15 In Indium 49	Sn Tin	Sb Antimony	$\begin{array}{c} 128 \\ Te \\ \text{Tellurium} \\ 52 \end{array}$	127 I lodine 53	Xe Xenon 54
9	CS Caesium		$\begin{array}{c} 139 \\ La \\ Lanthanum \\ 57 \end{array}$	$_{ m Hafinium}^{178}$	$\stackrel{181}{\mathrm{Ta}}$	184 W Tungsten	Rhenium	OS Osmium 76	192 Ir Iridium 77	Platinum 78	$\mathop{\mathrm{Au}}_{Gold}$	Hg Mercury	204 TI Thallium	207 Pb Lead 82	209 Bismuth	210 Po	At Astatine 85	Rn Radon
7	223 Fr Francium 87		Actinium															

			_	 _		
175	Lu	Lutetium	71	(257)	Lr	Lawrencium 103
173	Yb	Ytterbium	70	(254)	No	Nobelium 102
691	Пm	Thulium	69	(256)	Md	Mendelevium 101
167	Er	Erbium	89	(253)	Fm	Fermium 100
165	Ho	Holminm	67	(254)	Es	Einsteinium 99
163	Dy	Dysprosium	99	(251)	Ct	Californium 98
159	Tb	Terbium	99	(245)	Bk	Berkelium 97
157	РŊ	Gadolinium	64	(247)	Cm	Curium 96
152	Eu	Europium	63	(243)	Am	Americium 95
150	Sm	Samarium	62	(242)	Pu	Plutonium 94
(147)	Pm	Promethium	61	(237)	dN	Neptunium 93
144	PN	Neodymium	09	238	n	Uranium 92
141	Pr	Praseodymium	59	(231)	Pa	Protactinium 91
140	Ce	Cerium	58	232	Th	Thorium 90