Unit Test 6243/02

			(Total 4 marks)
	(d)	Structure from (c) with Br atoms added across C=C	(1 mark)
		I can be on any C atom halogen atom consequential on (b)	(1 mark)
	(c)	Full structure including C=C and C–I and all other atoms and bo correct.	onas
	(-)	Penalise missing Hs on (c) and (d) once only	
	(b)	Agl / silver iodide	(1 mark)
2	(a)	C=C / alkene / carbon-carbon double bond NOT "unsaturated hydrocarbon"	(1 mark)
			(Total 6 marks)
	(e)	Ba(NO ₃) ₂	(1 mark)
	(d)	Ammonia / NH ₃ (1) Nitrate / NO ₃ - (1) stand alone mark	(2 marks)
	(c)	Nitrogen dioxide / NO ₂	(1 mark)
	(b)	BaSO ₄ / barium sulphate	(1 mark)
1	(a)	Barium / Ba ²⁺	(1 mark)

3 (a	,	plus some working and must have units (2) e.g. 1) x 5 x 0.100 = 20 g (1)	(2 marks)
(b	corr	50 × 0.0500 × 2 = 0.0940 (mol dm ⁻³) 25.0 ect use of 2:1 mole ratio (1) hod (1) wer (1)	(3 marks)
(c	c) (i)	Adds 5 dm ³ of water not makes up to 5 dm ³ solution. ALLOW NaOH container was not re-weighed OR solid/NaOH left in its container NOT "use volumetric flask" NOT "NaOH lost" NOT " failure to wash out NaOH container"	(1 mark)
	(ii)	Reference to absorbing moisture and/or (named) acidic gas(es)	(1 mark)
(0	d) (i)	Causes burns / damage to / destroys living tissue OR damage to work bench NOT just "harmful"	
		NOT "corrodes"	(1 mark)
	(ii)	Wear gloves	(1 mark)

(Total 9 marks)

Density = 1.0 g cm^{-3} (a) OR 1 cm³ (of water) weighs 1 g (1 mark) (b) $(\Delta T = 38.1 - 19.5 =) 18.6 (°C)$ calculated or correctly used (1) $200 \times 4.18 \times 18.6 = 15.5/15.55$ (kJ) (1) 1000 (2 marks) Correct answer with some working (2) (c) (Mass used = 198.76 - 197.68 =) 1.08 calculated or correctly used Moles = 1.08 = 0.0235 / 0.02348 (1) (2 marks) 46.0 (d) Answer to (b) (1) Answer to (c) e.g. <u>15.5</u> 0.0235 negative sign and kJ mol⁻¹ (1) answer correct to 3sf (1) (3 marks) Ethanol vaporises/evaporates (1 mark) (e) (i) (ii) Carbon/soot (1) Incomplete combustion/insufficient oxygen so reaction does not go to completion (1) (2 marks)

(Total 11 marks)

4

5 (Heating under) reflux Distillation/simple distillation (1) NOT fractional distillation (2 marks) (b) (i) $\frac{137}{74}$ x 3.70 **(1)** = 6.9/6.85(g) **(1)** (2 marks) 4.60 × 100 = 67 / 66.67 / 66.7 % answer to (i) (ii) (1 mark) (1 mark) Slow/reaction takes a long time / high activation energy. (iii) Measure boiling temperature/point (1) (iv) Compare with data book/literature/known value (1) (2 marks) (1 mark) (c) (i) Orange to green Oxidation continues (1) (ii) carboxylic acid formed (1) (2 marks) Aldehyde/first product distilled off as it forms/removed from (iii) (1 mark) reaction mixture

(Total 12 marks)

6. READ THE WHOLE PLAN THROUGH FIRST

Procedure and measurements

- Weigh test tube empty
- Weigh test tube + QCO₃ ✓P2
- Heat QCO₃ to constant mass

Results and Identification

- <u>loss in mass</u> (= moles CO_2) = moles QCO_3 \checkmark R1 M_r CO_2
- Mass of QCO₃ = M_r QCO₃
 ✓R2
 Moles QCO₃
- $\bullet M_r QCO_3 60 = A_r Q$

ALLOW credit via QO route

- <u>loss in mass</u> (= moles CO_2) = moles QO $\checkmark R1$ $M_r CO_2$
- $\bullet M_r QO 16 = A_r Q$

Alternative correct methods can score up to three 'R' marks.

Errors and significance

- Incomplete decomposition/reaction
 OR impure sample of QCO₃/carbonate
- Not significant since need only match A_r to nearest
 Group 2 element
 ✓ E2
 (8 marks)

(Total 8 marks)