
UNIT TEST C1

6241

MARK SCHEME

JUNE 2002

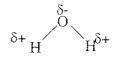
1	(a)		Bromine - liquid (1) lodine - solid (1)	2
	(b)		AgNO ₃ (aq): yellow ppt / solid / suspension with Nal (1) Cream / pale yellow / off white / ivory ppt / solid / suspension with NaBr (1) Not 'cloudy', not white.	
			Add ammonia solution: ppt. insoluble / stays the same. Nal (1) ppt. (partially) soluble NaBr (1)	4
			If says dilute ammonia must say 'partially' soluble for AgBr. If says conc ammonia must say soluble for AgBr.	•
			Total marks for question	6
2	(a)	(i)	$2Ca + O_2 \rightarrow 2CaO (1)$	1
		(ii)	$Na_2O + H_2O \rightarrow 2NaOH$ (1)	1
		(iii)	$Na_2O + 2HCI \rightarrow 2NaCI + H_2O$ Species (1) Balancing (1)	2
	(b)		(Thermal stability) increases (1) (with some attempt at a reason)	
			(cat)ion size increases / (cat)ion charge density decreases (1) polarises or distorts carbonate ion / anion /	
			electron cloud less. (1)	3

(d)		charge(stand alone) (1) 37 (1) if incorrect number of protons / mass number shown max 1 for charge	2
(e)	(i)	$S(g) + e^{-} \rightarrow S'(g)$ species and charges (1) state symbols in part (i) <u>and</u> (ii) equations (1)	2
	(ii)	$S(g) \rightarrow S^{\dagger}(g) + e^{-g}$ or $S(g) - e^{-g} \rightarrow S^{\dagger}(g)$ (1) Species and charge (1) No need to show negative charge on electron. If use 'X' in place of 'S' penalise once only	1
(f)		Chlorine nucleus has greater charge / is more positive / has greater number of protons (1)	
		outer electron / electron being removed, is in same shell / has same shielding (1)	2
		Total marks for question	14
(a)	(i)	moles of $KNO_3 = 10.1/101 = 0.100$ (1) Allow 0.1/0.10	1
	(ii)	moles of KOH = 0.100 (1) or answer from (i) – could be shown in calculation below. volume = 0.1 X 1000/2 = 50.0(cm ³) (1)	2
		Consequential on (i); allow 50	

vol O₂ = 0.05 x 24 = 1.2 (dm³) (1) i.e. x by 24 2 consequential on (ii) or (i) if use wrong unit eg mol dm³ max 1 Percentage of oxygen = 29.1% (1) stand alone (b) (i) Κ 70.9 / 39 29.1/16 (1) i.e. divide by A, 1.82 1.82 1 KO(1) 3 If assume KO and prove it (max 2) (ii) $M_c (= 22/0.2) = 110 (1)$ (M, of KO = 55 so) molecular formula = K_2O_2 (1) 2 Total marks for question 10 Structure - giant or macro + atomic / molecular / -(a) (i) covalent (1) Bonding - covalent (1) (ignore reference to vdW) Diagram - layers (1) of flat hexagons (1) 4 (min of 2 hexagons correctly joined for the 'hexagon' mark) If show links between layers there must be a clear difference between bonds in layer and bonds between layer. Structure – lattice / giant ionic / cubic (allow face (ii) centred cubic) (1) Bonding - ionic (1) 3 Diagram – lattice of alternate clearly identified / Na⁺ and Cl⁻ ions, must imply 3-D. (1)

moles of $O_2 = 0.1/2 = 0.0500$ (1) i.e. divide by 2

(iii)


	(b)		Graphite has covalent bonds/structure that need to be broken (1) NaCl has attraction between oppositely charged ions (1) In both structures a lot of energy is needed to overcome attractions or bonds. (1)	3
	(c)	(i)	Delocalised or sea of electrons (1) (which can) flow / move / mobile (1)	2
		(ii)	lons (free to) move / mobile (in liquid state) (1)	1
			Total marks for question	13
7	(a)	(i)	H_2SO_4 : +6 / VI (1) H_2S : -2 (1) SO_2 : +4 / IV (1) Allow 6+/2-/4+ If + charges omitted penalise once only	3
		(ii)	lodide has greater reducing power (1) with some attempt at using answer from part (i) Reduces sulphur by more oxidation numbers / or correctly uses their numbers from part (i) / or an 'electron gain' type argument (1) Allow error carried forward to argue for 'bromide' from (a) (i).	2
	(b)	(i)	$2Cl \rightarrow Cl_2 + 2e^{-1}$ or $Cl \rightarrow \frac{1}{2}Cl_2 + e^{-1}$ or $2Cl - 2e^{-1} \rightarrow Cl_2$ (1)	1
		(ii)	OCl + $2H^+ + 2e^- \rightarrow Cl^- + H_2O$ or OCl + $2H^+ \rightarrow Cl^- + H_2O - 2e^-$ (2) all species (1), balancing (1)	2
		(iii)	OCI' + 2H ⁺ + Cl' \rightarrow Cl ₂ + H ₂ O (1) Allow OCI' + 2H ⁺ + 2Cl' \rightarrow Cl ₂ + H ₂ O + Cl' Total marks for question	1 9

- 8 (a) (i) Hydrogen and oxygen (1)
 In parts (i) and (ii)..penalise use of symbols once.
- 1

(ii) Magnesium and oxygen (1)

1

(b) (i)

Correct partial charges on oxygen and at least one hydrogen (1)

1

Oxygen has higher electronegativity (than hydrogen) (1)
 Oxygen attracts more or has greater share of...covalent / bonding / shared...electrons / pair (1)

2

(iii) Polar / yes because / bond polarities don't cancel / dipoles don't cancel / vectors don't cancel / centres of positive and negative charge don't cancel (or don't overlap) (1)

1

Total marks for question 6

Paper total 75 marks

UNIT TEST C2

6242

MARK SCHEME

JUNE 2002

1	(a)		Enthalpy / heat (energy) change on the neutralisation / reaction of one mole of a monobasic acid / hydrogen ions (by an alkali) or	
			Enthalpy / heat (energy) change on the formation of one mole of water when an acid is neutralised Or	
•			Enthalpy change per mole for reaction $H^+ + OH^- \rightarrow H_2O$ (1)	1
	(b)		q = mcΔT (1) other unambiguous symbols / names = 100 x 4.18 x 6.90 (1) = 2884 J including units (1) Consequential on sensible chemistry in line 2 i.e. use of 50 for mass or temp in K or data for temperature transposed(max2). Ignore sign of answer Allow 3 or 4 significant figures	3
	(c)		2884/0.05 (1) answer from (b) ÷ 0.05 / allow answer from (b) x 20	
			= - 57.7 kJ mol ⁻¹ (1) accept - 57.6 If wrong sign (max1) If wrong units (max 1)	2
	(d)		Ensures all acid reacts / neutralisation (of acid) completed / reaction (of acid) completed / all H ⁺ reacted(1)	1
			Total marks for question	7
2	(a)	(i)	any two from concentration pressure surface area / particle size (2 x 1)	2
		(ii)	Pressure / concentration: Increase of pressure / concentration increases rate (1) The particles are closer together therefore more collisions / more collisions per unit volume per unit of time (1) Allow more 'frequent' collision or Surface area: Increase in surface area increase the rate (1) More collisions on surface of solid / more surface available for collisions (1)	2

	(b)	(1)	and lower maximum(1) Max 1 mark if second line crosses the first more than once or crosses axis	2
		(ii)	Vertical line placed to the right of both of the peaks (1)	1
		(iii)	(At higher temperature average kinetic) energy of molecules is greater (1) More molecules / collisions have energy greater than / equal to the activation energy (1) Therefore more collisions are effective / result in reactions (1) Total marks for question	3 10
3	(a)	(i)	Dynamic: reaction occurring in both directions / rate of forward reaction and reverse reactions equal (1) Equilibrium: constant concentrations / no change in macroscopic properties(1)	
		(ii)	all substances in same phase / are all in the gaseous state(1)	1
	(b)	(i)	Higher yield of ammonia / (equilibrium position) moves to. r.h.s (1) Fewer product molecules (1)	2
		(ii)	Lower yield of ammonia / (equilibrium position) moves to l.h.s.(1) since this absorbs heat / shift in endothermic direction / the reaction is exothermic (1)	2
	(c)	(i)	350 – 500°C / 623 – 773 K (1)	1

(ii) High temp favours high rate (1) Or reverse argument Low temp favours good yield (1) Temperature used compromise / balance between 3 yield and rate (1) consequential on first two points correct 1 Iron (not Fe) (1) (d) (i) ignore references to oxides (ii) Provides alternative pathway / route Explanation of what happens at the surface(1) 2 of lower activation energy (1) Second mark consequential on the first Total marks for question 14 HBr (name or formula) (1) 4 (a) (i) gas phase or inert / organic solvent (1) 2 Ignore heat or temperature. Do not allow ethanol as the organic solvent (ii) 1 Or CH, CHBrCH, (1) (b) (i) or CH₃CH(OH)CH₃ (1) 1 This mark is not consequential on (a)(ii) i.e. this is the only acceptable answer 2 electrophilic(1) addition (1) (ii) nucleophilic (1) substitution / hydrolysis (1) 2 All marks stand alone in this part of the question

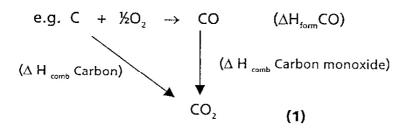
concentrated_sulphuric acid / phosphoric acid / (i) (c) aluminium oxide (1) Allow correct formula heat / 170°C (for sulphuric acid) / 70°C (for 2 phosphoric acid) (1) Consequential on sensible reactants. Not 'warm' Reagent - allow full names or correct formulae (ii) Potassium dichromate (1) sulphuric acid or hydrochloric acid (1) Potassium manganate(VII) (1) sulphuric acid or named alkali or stated neutral solution(1) Condition: 3 Heat / warm (1) (d) OH OH or CH₃CH(OH)CH₂OH (1) 1 1 H(1) (e) Must show the double bond carbon and attached hydrogen in displayed form Total marks for question 15 Group of compounds with the same general 5 (a) formula(1) that differ by -CH,- (1) Same or similar chemical properties / same 3 functional group(1) (b) (i) At least one repeat unit(1)

2

evidence of extension of chain(1)

consequential on correct repeat unit

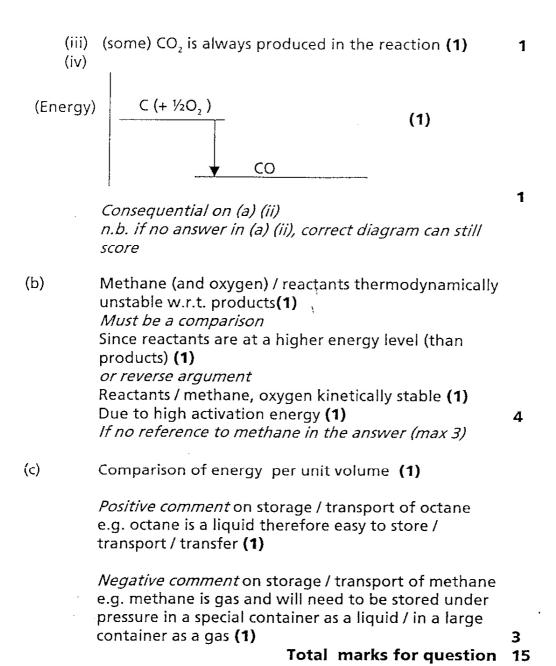
- (ii) CH₂ (1) empirical formula of propene / the repeat unit(1) since polymer made by addition reaction / no loss of small molecules(1)
- 3
- (c) Different chain lengths / areas of crystalline and amorphous structure (1)
- 1


1

- (d) (i) C-F bond strong / high bond enthalpy / bond not easily broken / steric hindrance by fluorine around carbon(1)
 - (ii) Non-stick coatings e.g. in saucepans, in pipes, on skis, stain-proofing of fabrics, waterproof clothing. (1)
- (e) Only single / sigma bonds in ethane (1)

Ethene also has π bond (1) π bond weaker (and breaks) / electrons in π bond more accessible (1)

Total marks for question 14


- 6 (a) (i) Enthalpy or heat change / released when 1 mol of substance (1) is burned in excess oxygen / completely (1) all substances in standard states (at a specified temp)/ at a pressure of 1 atm. (1)
 - (ii) Suitable cycle (need not be labelled but if labelled, these must be correct) (1)working(1)answer (1)

= -394 -(-283) (1) = -111 (kJ mol⁻¹) (1) Penalise 1 mark if units incorrect

3

3

Paper total 75 marks

UNIT TEST C3B
6243 B
MARK SCHEME

JUNE 2002

- A-F-G-C-D-E-B (2) (a) 2 1 mark if 1 letter out of sequence but rest correct. 0 mark if 2 or more letters out of sequence. nb if adjacent pair inverted this is one error.
 - Little to produce a saturated solution / to prevent loss (b) of solid / because all solid will not crystallise / to prevent loss of yield.(1) Small - (if large volume used) solid would be lost / dissolved (1) 2

1 Total marks for question 4

(a) 2

Gas	Reagents or test	Observation
Hydrogen :x		(Squeaky) pop (1)
Oxygen:		Relights/glows brighter (1)
Carbon : :	Limewater/ <i>Calcium</i> <i>Hydroxide/</i> Ca(OH) ₂	Cloudy/white ppt/ milky (1)
Sulphur dioxide	A Principal Control of the Control o	Green (1)
Chlorine/Cl ₂ (1) Not Cl Allow bromine/Br ₂		

(b) General marking points

Test/reagent (1)

Result with alkene (1)
Result with alkane (1)

eg Reagent

bromine (solution) / bromine water / Br₂

or potassium manganate (VII) + sulphuric acid / acidified / sodium hydroxide / alkaline (or correct formulae)

Accept KMnO₄/H⁺ or KMnO₄/OH (1)

Result

Br₂ yellow / red-brown / orange / orange-red / brown goes colourless / decolourised / goes colourless.(1) eg orange solution decolourised, <u>not</u> just decolourised There must be some reference to the initial colour of the bromine. Not goes clear

KMnO₄ + acid/alkali

If acid conditions purple to colourless / decolourised / goes colourless

Not goes clear

or

If alkaline conditions purple to brown ppt / solid (1)

The answer may imply no change with alkane by saying only alkene reacts

Total marks for question 9

3

3 General Principle

Either

Common test on both compounds (1)
Correct observation for one compound (1)
Correct observation for second compound (1)

OR

Test on one compound (1)

Observation for this compound (1)

Different test on second compound <u>and</u> observation for this compound (1)

(a) Reagent: Obs: Barium chloride + HCl / Barium nitrate + HNO₃ (1) Sulphate / SO₄²⁻: white ppt. insoluble in HCl/HNO₃ (1) Sulphite / SO₃²⁻: white ppt. soluble in HCl/HNO₃ (1) nb if add acid first no ppt with sulphite

or

Reagent;

Add named acid (and heat) (1)

Obs:

Sulphite / SO₃²⁻ :colourless gas evolved turns potassium

dichromate(VI) green / blue litmus red/smell(1)

Sulphate / SO₄²⁻: no gas / no sulphur dioxide evolved / no

reaction(1)

or

Reagent;

Potassium manganate(VII) + acid (1) Sulphate / SO_4^2 : no colour change (1)

Obs: Sulphite / SO

Sulphite / SO₃²: purple colour goes / solution goes

colourless / mauve colour lost (1)

(b) Test

Flame test or description of test (1)

Obs:

Sodium salt: gives yellow / orange colour (1)

Ammonium salt: gives no colour (1)

or

Reagent

Add named alkali (1)

Obs:

Ammonium salt: gives colourless gas that turns red

litmus blue (1)

Sodium salt: gives no gas / no gas evolved (1)

or

Test

Heat (solid) (1)

Obs:

Sodium Nitrate: gives gas that relights glowing splint

(1)

Ammonium nitrate: obs or test for water / no effect on

glowing splint (1)

3

3

(c) Reagent;

Heat / add boiling water (1)

Obs:

Carbonate / CO₃² no gas evolved (1)

Hydrogen carbonate / HCO₃⁻ colourless gas evolved turns limewater cloudy / test or observation for water

vapour(1)

or

Reagent;

Add (solution) of calcium chloride or magnesium

sulphate (1)

Obs:

Carbonate / CO,2- white ppt (1)

Hydrogen carbonate / HCO, no ppt (1)

or

Reagent

Measure pH / add universal indicator (1)

Obs

Carbonate / CO₃² gives pH>10 (1)

Hydrogen carbonate / HCO₃ gives pH 8 to 9 (1)

3

Total marks for question

4 (a) **Note 1 mark** for improvement **1 mark** for related reason in each case to **max 4 marks.** Reason must relate to improvement. Max 2 for improvement Max 2 for reason.

Improvement

insulate beaker / polystyrene cup / plastic cup / use lid

(1)

Reason

Prevents / reduces heat loss or absorbs less heat (1)

Improvement

Use pipette / burette (1)

Reason

More accurate (than measuring cylinder) (1)

Improvement

Measure temperature for several minutes before the

addition (1)

Reason

Allows more accurate value for the initial temperature

(1)

Improvement

Measure temperature more often (1)

Reason

Allows for better extrapolation / more accurate

temperature change from graph (1)

Improvement

Read thermometer to 1dp / use more precise

thermometer / digital thermometer (1)

Reason

Gives more accurate temperature change(1)

Improvement

Stir mixture(1)

Reason

Ensure even temperature / reaction faster less heat loss

with time(1)

Improvement

Use finely divided iron / smaller pieces (1)

Reason

Reaction faster less heat loss with time (1)

Not speeds up alone

4

 $= 50.0 \times 4.18 \times 15.2 / 1000 \text{kJ}$ = 3.18kJ or 3180J (1)Ignore sig. fig. Allow mark if units omitted 1 If units quoted but wrong eg 3.18 J score 0. (ii) No of mols of copper sulphate = $50.0 \times 0.500 / 1000$ = 0.025 (1)1 (iii) Enthalpy change per mol = 3.18/.025 = -127kJ(1)negative sign (1) stand alone consequential on (i) and (ii) max 4 sig fig and answer must be in kJ mol' even if units 2 omitted. Total marks for question 8 5 (a) (i) Contains an OH / alcohol / hydroxyl / hydroxy (1) 1 not OH or hydroxide do not allow mark if reference to carboxylic acid. (ii) (carbon)-carbon double bond/C=C/alkene (1) 1 Allow just double bond or unsaturated if show C=C in part (iv) (iii) 1 -Ç—-H $CH_2 = CH - CO - CH_3$ (1) (iv) H H (2) allow (1) mark for isomer of this structure which shows C=C and O-H X must be a secondary alcohol because ketone formed / on oxidation carboxylic acid is not formed (1) 3 (b) (i) AgBr (1) 1 $CH_4H_9Br + H_2O \rightarrow C_4H_9OH + H^+ + Br^-$ (ii)

Heat change = $50.0 \times 4.18 \times 15.2 J$

(b)

(i)

/OH^{*}

1

/+ Br (1)

		(iii)	not miscible / reactants do not mix (1)	1
		(iv)	Reaction very slow at room temperature / heat speeds up the reaction /increases rate / flammable (1)	1
			Total marks for question	10
6	(a)	nb th P	ese are the only points for which credit may be given Pipette mark: use of pipette for NaOH ✓P	
		ı	Indicator mark: add to NaOH <u>named</u> acid / base indicator ✓ I not litmus or UI	
		Т	Technique mark: some reference to technique eg add acid to alkali with swirling / dropwise at end point / slowly / use a white tile ✓T	
		E	End point mark: indicator colour changed by addition of one drop / colour at end point for indicator used ✓E	
		С	Consistency mark:consistent titres / within 0.2 or better / concordant results √C	5
	(b)	(i)	2NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + 2 H_2O$ (1) Ignore state symbols	1
		(ii <u>)</u>	Use of ratio 2 mols to 1 mol (1)	
			(Volume) 12.5 cm³/0.0125 dm³ (1) Must include units consequential on part (i)	1
		(iii)	Error is 0.2 x 100 / 25 (1) = 0.8% (1) or 0.1 x 100 / 12.5 = 0.8%	2
			accept alternative method that gives same answer	
			Total marks for question Paper total 50 marks	10