UNIT C4 (6244)

MARK SCHEME

JANUARY 2002

(a)

only state if

exat & Jar.

1

Lattice Energy:

- enthalpy or heat energy released (could mention the process is exothermic or value negative) (1)
- when gaseous ions (1)
- (come together to) form 1 mole solid / crystal / lattice (1) but not substance

if equation given could get state marks and energy change marks if AH shown

[3]

Enthalpy of Atomisation:

- heat energy change for the formation of one mole of gaseous atoms (1)
- from an element in its standard state (1)

not standard conditions if state or imply exothermic max 1

[2]

correct step shown (1) must identify change (b) (i)

[1]

+150 + 736 + 1450 + (2x121) + 642 = 3220= 2493 + 2x (1)2x = 727 $x = -363 \pm 1$ (1) sign vital n.b. -727 scores 1, -303 scores 1, -606 scores 0

[2]

(c)

 $Na^{+}(g) + H(g) + e^{-}$ $Na^{+}(g) + H'(g)$ Na(g) + H(g) $Na(g) + \frac{1}{2}H_{2}(g)$ $Na(s) + \frac{1}{2}H_{3}(g)$ NaH(s) Marking points on cycle

 all correct species and steps plus state symbols where crucial (1 mark)

n.b. crucial steps Na (s) to Na (g) + gaseous ions to solid NaH

- complete cycle (1 mark)
- ½H, to H (1 mark)

n.b. the whole cycle could be doubled to give 2 x electron affinity

n.b. an energy diagram as above is not essential any correct cycle in any representation is equally acceptable n.b. any cycle containing H scores 0 marks

[3]

Total 11 marks

- 2 (a) (i) CO₂/SiO₂(1)
 - (ii) PbO/PbO,/SnO/SnO, (1)

[2]

[4]

(b) (i) Reacts with both acids and bases / can act as both an acid or a base / has both acidic and basic properties or characteristics (1) [1]

| mail /equetion

(ii)
$$Al_2O_3$$
 (s) + $6H^+$ (aq) $\rightarrow 2Al^{3+}$ (aq) + $3H_2O$ (l) (1)
Balanced and ionic
 Al_2O_3 + $6OH^-$ + $3H_2O$ $\rightarrow 2Al(OH)_6^{3-}$
 Al_2O_3 + $2OH^ \rightarrow 2AlO_2^-$ + H_2O
 Al_2O_3 (s) + $2OH^-$ (aq) + $3H_2O$ (l) $\rightarrow 2Al(OH)_4^{-}$ (aq) (1)

Evidence of understanding of meaning of amphoteric (1) = bonus ever in i.e. two equations, one with H' and one with OH contact belong equations (1) [4]

(c) (i) NaCl + $H_2O^{\dagger} \rightarrow Na^{\dagger} + Cl$ (1) Bod question - tred to be helpfy do not penalise omission of water pH = 7 (1) \pm 0.1

$$PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$$

 $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$ (1)
 $pH<1$ (1) allow 0 to 3

(ii) NaCl ionic only dissolves (1) PCl_s covalent reacts (with water to produce H⁺) / hydrolyses (1) [2]

•	(d)	(i)	C1 (1)	
			CI	
			must be 3-D	[1]
		(ii)	Two layers formed / no reaction / nothing / immiscible (1)	[1]
Hil quein who only for t-just with	off steerny ite fur	(iii) '``	(Violent) reaction / hydrolysed (1) Identification of one product / description of one product (1) e.g. steamy fumes / white fumes / white solid / named product or representation of correct products in an equation provided state symbol included	[2]
		(iv)	• The reaction takes place by the interaction of the lone pair of electrons on the water (1)	
			 Bonding to central (silicon/carbon) atom / attaching to central atom (1) 	
			 In silicon the 3d orbital is available to accept the pair of electrons (1) 	
			 In carbon no similar orbital is available / not enough energy available to utilise vacant carbon orbitals / carbon surrounded by chlorine atoms causing steric hindrance (1) 	[4]
			Total 21 marks	;
3	(a)		only partially dissociated / ionised / not fully dissociated (1) into H ⁺ ions / H ₃ ⁺ O / proton donor (1)	[2]
	(b)		$Ka = [H_3O^*][A^*]$ [HA] (1)	[1]
	(c)	(i) (ii)	9.0 to 9.4 (1) Graph to horizontal 9.0 to 9.4 (1) or same answer as (c)(i)	[1] [1]
ų.		(iii)	pK _a = 5.6 (1) K _a = 2.5 x 10 ⁻⁶ (1) consequential	[2]
)	(d)	(i)	(a solution that) resists change in pH / retains an almost constant pH (1) on addition of small quantities of acid or alkali (1)	[2]

- 5.5 or 5.6 (1) or answer from (c) (iii) based on misreading scale of graph, e.g. 4.8 Very confusion with the horizontal [2]. indictor changes colour between pH 7 and 10 this part of graph (1)

 methyl orange would change in acid / give pH bet

 and pH6 (1)

 the of the possible n.b. must be +ve statement about methyl orange

 heres

 (f) indictor changes colour between pH 7 and 10 this is vertical methyl orange would change in acid / give pH between pH4 [3] exothermic reaction / heat (energy) released during reaction (1) HCl is strong acid fully ionised (1) this is weak acid so some energy used for dissociation (1) [3] [1] (i) $pH = -log_{(10)} [H^{\dagger}]$ or in words (q) (ii) $1.8 \times 10^{-5} = [H^+]^2$ (1) $[H^{+}] = \sqrt{1.8 \times 10^{-5}} = 4.24 \times 10^{-3}$ (1) $pH = -log(4.24 \times 10^{-3})$ [3] = 2.37/2.4 (1) 2 to 4 sig. figs. Total 21 marks
 - 4 (a) (i) $Kp = \frac{P_{SO2}^2 \times P_{O2}}{P_{SO3}^2}$ (1)

 [] no mark

 () OK

ĵ

(ii) $2SO_3 \rightarrow 2SO_2 + O_2$ Mols at start $2 \quad 0 \quad 0$ mols at equ 0.5 1.5 0.75 **(1)**

Mark by process

(ii) 5.2 to 5.8 **(1)**

1 mark for working out mole fraction 1 mark for x 10 1 mark for correct substitution in K_p and answer 1 mark for unit

i.e.
$$P_{so2} = \frac{1.5}{2.75} \times 10 = 5.46$$

 $P_{o2} = \frac{0.7}{2.75} \times 10 = 2.73$
 $P_{so3} = \frac{0.5}{2.75} \times 10 = 1.83$

n.b. could show mole fraction for all 3 and then x 10 later to give partial pressure.

$$Kp = (5.46)^2 \times (2.73) / (1.83)^2 = 24.5 (1) atm (1)$$
 [5]

No effect (1) (b)

[1]

No effect (1)

[1]

Total 8 marks

n.b. if H omitted penalise only once in this question (i) 5

or CH₃CH₂CH₂CN

[1]

 $LiAIH_4$ / $NaBH_4$ / $Na + C_2H_5OH$ / $H_2 + Ni$ or Pt catalyst / zinc plus (ii) acid **(1)** Name or correct formula

[1]

(iii) H H H H H

H-C-C-C-C-N

H H H H H

H all bonds.

not CH,CH,CH,CH,NH, consequential on (i)

[1]

H HH-C-H H-C-C-C-N H H H H H

Allow

(1+1)

[2]

Ione pair of electrons on the N atom (1) (i) (c)

[1]

(ii)
$$C_4H_9NH_2 + H^+ \rightarrow C_4H_9NH_3^+$$
 (1)
not consequential on (b)
allow molecular equation
allow RNH₂

[1]

- (d) (i) amide (1) [1]

 (ji) faster / more control / better yield / not equilibrium / no need to heat (1) [1]

 (e) / (i) PCl₅ / PCl₃ / SOCl₂ (1) or name [1]
 - (ii) Make a Grignard reagent using magnesium (1)

expendent on suits react this with (solid) CO₂ (1)

then hydrolyse with acid / + acid / + H / + HCl (1) not stand alone \ added \text{added}

Alternative routes are possible

Or

Total 14 marks

PAPER TOTAL 75 MARKS