nuc).		Paper Reference	(complete below)	Surname	Initi	al(s)
ndidate			/	Signature		
	Paper Reference(s)				Examiner'	s use only
	6241/P.	01				
	Edex	cel GC	E		Team Leader	r's use oni
-	Chemi	stry				
	Advanc	ed Level/A	dvanced	Subsidiary	·	
•	Unit Te	st 1			Ques Num	
	Monday	4 June 2001	- Afterno	on	1	
	Time: 1	hour 20 min	utes		2	
	Materials requ	ired for examination	Items included	with question papers	3	
	Nil		Nil		4	
					5	
	•				6	
	A Comment				7	
Instructions to	o Candidates				8	
In the boxes abyour signature,	ove, write your of surname and init		·	•		
should write th Answer ALL	e one for which guestions in the	oove. If more than you have been ente spaces provided i r	red. 1 this question p	aper.		
Show all the st	eps in any calcul	ations and state the ould be given to an	units. Calculato	rs may be used.		-
Include diagran	ns in your answe wer sheets may b	rs where these are e used.	helpful.			
Information f	or Candidates				_	
		ne back cover of thi				

Turn over

Total

and spelling.

brackets: e.g. (2).

Advice to Candidates

There are eight questions in this question paper.

The total mark for this paper is 75.

You are reminded of the need to organise and present information, ideas, descriptions and arguments clearly and logically, taking account of your use of grammar, punctuation

(a)		en the Group 2 element calcium is added to water, calcium hydroxide and drogen are produced.
	Wr	ite an equation for the reaction.
	••••	(1)
(b)		te the trend in solubility of the hydroxides of the Group 2 elements as the mic mass of the metal increases.
	••••	(1)
(c)	(i)	
		(4)
	(ii)	
		(3)
		(Total 9 marks)

		1s ²
(ii))	Deduce the number of neutrons in the nucleus of an atom of 32 S.
(b) (i)		Define the term first electron affinity. (1)
		(2)
(ii)		The following equation represents the change occurring when the second electron affinity of sulphur is measured. $S^-(g) + e^- \to S^{2-}(g)$
(ii)	6	The following equation represents the change occurring when the second electron affinity of sulphur is measured. $S^-(g) + e^- \to S^{2-}(g)$ Explain why the second electron affinity of an element is endothermic.
(ii)	6	The following equation represents the change occurring when the second electron affinity of sulphur is measured. $S^-(g)+e^-\to S^{2-}(g)$
(ii)	6	The following equation represents the change occurring when the second electron affinity of sulphur is measured. $S^-(g) + e^- \to S^{2-}(g)$ Explain why the second electron affinity of an element is endothermic.

		en accelerated.	ysed using a mass spectro	officier, its atoms are
(i)	Explain h	ow the atoms of the	e sample are ionised.	
	***************************************	••••••		
	······································			
	••••••			(2)
(ii)	State how	the resulting ions a	are then accelerated.	
	***************************************		<u></u>	
				(1)
(b) For	r a particula	r sample of copper t	two peaks were obtained in	n the mass spectrum.
		Peak at m/e	Relative abundance	
		63	69.1	
(i)	Give the f	ormula of the specie	and an analysis and a second s	c at <i>m/e</i> = 65.
(i)		ormula of the speci		(1)
	State why	ormula of the speci	es responsible for the peak	(1) obtained in the mass
(ii)	State why spectrum.	two peaks, at m/e where	es responsible for the peak	(1) obtained in the mass
(ii)	State why spectrum. Calculate	two peaks, at m/e where	es responsible for the peak values of 63 and 65, were	(1) obtained in the mass
(ii)	State why spectrum. Calculate	two peaks, at m/e where	es responsible for the peak values of 63 and 65, were	(1) obtained in the mass
(ii)	State why spectrum. Calculate	two peaks, at m/e where	es responsible for the peak values of 63 and 65, were	(1) obtained in the mass
(ii)	State why spectrum. Calculate	two peaks, at m/e where	es responsible for the peak values of 63 and 65, were	(1) obtained in the mass

4. (a) Compound **A**, consisting of carbon and hydrogen only, was found to contain 80.0% carbon by mass.

Leave blank

(i) Calculate the empirical formula of compound A, using the data above and the periodic table.

(3)

(ii) The relative molecular mass of compound A was found to be 30. Use this information to deduce the molecular formula of compound A.

(1)

(b) Propane has the molecular formula C_3H_8 . Propane burns completely in oxygen to form carbon dioxide and water as shown in the equation.

$$C_3H_8(g)+5O_2(g)\rightarrow 3CO_2(g)+4H_2O(g)$$

(i) Calculate the mass of water produced when 110 g of propane burns completely in oxygen.

(3)

(ii) Calculate the volume of oxygen required to completely burn 110 g of propane. (1 mole of gas has a volume of 24 dm³ under the conditions of the experiment.)

Q4

(2)

(Total 9 marks)

(a) SF ₆ (b) PH ₃ (c) PF ₄ (3)	_	re.		
(a) PH ₃ (b) PH ₃ (c) PF ₄ ⁺	(a)	SF_6		
(b) PH ₃ (c) PF ₄ (3)				
(3) PF ₄				
b) PH ₃ (3) (b) PF ₄				
b) PH ₃ (3) (b) PF ₄				
b) PH ₃ (3) (b) PF ₄				
b) PH ₃ (3) (b) PF ₄				
b) PH ₃ (3) (b) PF ₄		en e		
(3) PF ₄				
(3) PF ₄				
c) PF [‡]	_		(3)	
c) PF ₄ ⁺	b)	PH ₃		
c) PF ₄ ⁺				
c) PF ⁺ ₄				
c) PF ₄ ⁺				
c) PF ⁺ ₄				
c) PF ₄ ⁺				
C) PF ₄				
c) PF ₄ ⁺				
c) PF ₄ ⁺				
			(3)	
	(c)	$\mathbf{PF_4^+}$		
\sim 3) $+$ \sim			(3)	Q5
(Total 9 marks)				

(i)	Complet	e the following table.			
			Compound	Flame colour		
			Lithium chloride			
			Sodium bromide			
			Potassium iodide			
(ii	i)	Explain (the origin of the colour	s in flame tests	(3	3)
(34	- /					•
T	hes	e compo	unds can also be disti	inquished from one an	other by the use o	f
	onc)	entrated s State wh	sulphuric acid.	inguished from one an en concentrated sulphu of these compounds.		
co	onc	entrated s State wh separate	sulphuric acid. at would be seen whe	en concentrated sulphu of these compounds.		
co	onc	entrated s State wh separate	sulphuric acid. at would be seen whe solid samples of each c	en concentrated sulphu of these compounds.		
CO	onc	State wh separate	sulphuric acid. at would be seen whe solid samples of each c	en concentrated sulphu of these compounds.		
co	onc	State wh separate	sulphuric acid. at would be seen whe solid samples of each centride	en concentrated sulphu of these compounds.	ric acid is added to	
co	onc	State wh separate Lithium Sodium t	at would be seen whe solid samples of each controls.	en concentrated sulphu of these compounds.	ric acid is added to	
CO	onc	State wh separate Lithium Sodium t	at would be seen whe solid samples of each control con	en concentrated sulphu of these compounds.	ric acid is added to	
co	one (i)	State wh separate Lithium Sodium b	at would be seen who solid samples of each control con	en concentrated sulphu of these compounds.	ric acid is added to	
(i)	one (i)	State wh separate Lithium Sodium b	at would be seen who solid samples of each control con	en concentrated sulphu of these compounds.	ric acid is added to	

6.

7.	(a)		water contains aqueous bromide ions. During the manufacture of bromine water is treated with chlorine gas and the following reaction occurs:
			$2Br^- + Cl_2 \rightarrow Br_2 + 2Cl^-$
		(i)	Explain the term oxidation in terms of electron transfer.
		(ii)	Explain the term oxidising agent in terms of electron transfer.
			(1
		(iii)	State which of the elements chlorine or bromine is the stronger oxidising agent and explain the importance of this in the extraction of bromine from
			seawater, as represented in the equation above.
			(2)
	(b)		en sodium chlorate(I), NaClO, is heated, sodium chlorate(V) and sodium ride are formed.
		(i)	Write the ionic equation for this reaction.
			(2)
		(ii)	What type of reaction is this?
			(1)

Leave blank

(c)	Dur	ing one process for the manufacture of iodine the following reaction occurs:	Leave
		$2IO_3^- + 5SO_2 + 4H_2O \rightarrow I_2 + 8H^+ + 5SO_4^{2-}$	blank
	(i)	Deduce the oxidation number of sulphur in:	
		SO ₂	
	(ii)	SO ₄ ²⁻	
		reduced in the above reaction.	
	(iii)	Name a reagent that could be used to confirm that a solution contains iodine, and state what would be seen.	
		(2)	Q7
		(Total 12 marks)	

3. (a)	Explain the following observations. Include details of the bonding in a structure of each substance.	nd the	Leave blank
	(i) The melting temperature of diamond is much higher than that of iodin	ne.	
	•••••••••••••••••••••••••••••••••••••••		
	(ii) Sodium ablarida has a bird making tamagatura (annayingtaly 2002)	(5)	
	(ii) Sodium chloride has a high melting temperature (approximately 800°C	<i></i>	
(b)	Explain why aluminium metal is a good conductor of electricity.	(3)	
			00
		(3)	Q8
	(Total 11 m TOTAL FOR PAPER: 75 MA		
	END	IMA	

1 2

Ac Actinium Group

4

6

0

Period

1	H
1	Hydrogen
	L typrogen

Fr Francium

Ra Radium Molar mass g mol

4 He Helium 2

							1 }	Vame	1				7					
[7	9					1 .						Ü	12	14	16	19	20
2	Li	Be					Atom	ic number	ٔ لا				В	C	N-	0	F	Ne
	Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
	3	4											5	6	7	8	9	10
	23	24				* *							27	28	ונ	32	35.5	40
3	Na	Mg											Al	Si	P	S	Cl	Ar
_	Sodium	Magnesium										-	Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
	- 11	12											13	14	15	16	17	18
	19	40	45	48	51	52	55	56	59	59	63.5	65.4	70	73	75	79	80	84
4	K	Ca	Sc .	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	lron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Кгурюв
	19	20	21	22	23	24	25	26	27	28	29	30	31	12	33	34	35	. 36
	85	88	89	91	93	96	99	101	103	106	108	112	115	119	122	128	127	131
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	· I	Xe
	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
	37	38	39	40	41	42	43	-14	45	+6	47	48	49	50	51	52	53	54
	133	137	139	178	[8]	184	186	190	192	195	197	201	204	207	209	210	210	222
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	Cacaium	Barium	Lanthanum 3	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	223	226	227															

140	141	144	(147)	150	152	157	159	163	165	167	169	173	175
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Cerium	Prasoudymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
58	59	60	61	62	63	64	65	66	67	68	69	70	71
								,			,		
232	(231)	238	(237)	(242)	(243)	(247)	(245)	(251)	(254)	(253)	(256)	(254)	(257)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 163

7

U