Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	2	5	2	/	0	1	Signature	

Paper Reference(s)

6252/01 Edexcel GCE Chemistry (Nuffield) Advanced Subsidiary

Unit Test 2

Thursday 17 January 2008 – Morning

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Nil	Passage for Section B

A calculator may be used.

Instructions	to	Can	AiA.	ntas

In the boxes above, write your centre number, candidate number, your surname, initial(s) and your signature.

Answer ALL questions in Section A and Section B. Write your answers in the spaces provided in this question paper.

Some questions must be answered with a cross in a box (\boxtimes). If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes). The passage for Section B is provided on a separate insert.

Final answers to calculations should be given to an appropriate number of significant figures. Do not return the insert with the question paper.

Information for Candidates

A Periodic Table is printed on the back cover of this paper.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). The total mark for this paper is 60. There are 16 pages in this paper. All blank pages are indicated.

Advice to Candidates

You are advised to show all steps in any calculations.

You should aim to spend no more than 55 minutes on Section A and 35 minutes on Section B. You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking into account your use of grammar, punctuation and spelling. Up to 2 marks will be awarded for the Quality of Written Communication used in Section B.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2008 Edexcel Limited.

N29269A W850/R6252/57570 7/7/7/3/2100

Turn over

Total

Examiner's use only

Team Leader's use only

Question Number

1

2

3

Leave Blank

Leave blank

Answer ALL the questions. Write your answers in the spaces provided.

SECTION A

You should aim to spend no more than 55 minutes on this section.

1. (a) Four reactions of but-1-ene are summarised on the chart below.

(i) Give the TWO reagents you would use for Reaction 1 in the labora	tory.
	(2)
(ii) Give the name of the product, Compound A , of Reaction 2 .	
	(1)
(iii) Give the name of the product, Compound B , of Reaction 3.	
	(1)
(iv) Suggest the reagent needed for Reaction 4.	
	(1)

			(1)
(c)	(i)	Explain what is meant by an electrophile .	
			(1)
	(ii)	Give the formula of the attacking electrophile in Reaction 3.	
			(1)
(d)	(i)	Select ONE reaction from 1–4 which involves oxidation of but-1-ene.	
		Reaction	(1)
	(ii)	Explain what is meant by oxidation in this reaction.	
			(1)

		Leave blank
(e) 1-chlorobutane can be made from but-1-ene in a two-step process. The but-1 first reduced and then a chlorine atom is substituted for a hydrogen atom.	-ene is	
$CH_3CH_2CH = CH_2 \longrightarrow Compound C \longrightarrow CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	l	
(i) Identify compound C.		
	(1)	
(ii) Name the reagent and catalyst required for Reaction 5.		
Reagent		
Catalyst		
	(2)	
(iii) Name the reagent and conditions for Reaction 6.		
Reagent		
Conditions		0.1
	(2)	Q1
(Total 15 n	1arks)	

			Leave blank
2.	(a)	Silicon, phosphorus and sulphur form chlorides with molecular formulae $SiCl_4$, PCl_3 , SCl_2 .	Oldlik
		Draw the shapes you would expect for these molecules, suggesting a value for the bond angle in each case.	
		SiCl ₄	
		ClSiCl bond angle	
		PCl_3	
		ClPCl bond angle	
		SCl_2	
		CISCI bond angle	
		(3)	

Leave blank

(b) Calculate the standard enthalpy change of formation of gaseous silicon tetrachloride, $\Delta H_{\rm f}^{\ominus}[{\rm SiCl_4}(g)].$

Your answer should include a sign and units.

Use the Hess cycle below and the following data at 298 K.

$$\Delta H_{\text{at}}^{\oplus}[\text{Si}(s)] = +455.6 \text{ kJ mol}^{-1}$$

$$\Delta H_{\text{at}}^{\oplus}[\frac{1}{2}\text{Cl}_2] = +121.7 \text{ kJ mol}^{-1}$$

Bond energy, E (Si-Cl) = $+407.4 \text{ kJ mol}^{-1}$

(3)

(c) (i)	Phosphorus trichloride reacts with oxygen to form phosphorus oxychloride in equilibrium reaction.
	$PCl_3(g) + \frac{1}{2}O_2(g) \rightleftharpoons POCl_3(g)$ $\Delta H^{\oplus} = -153.6 \text{ kJ mol}^{-1}$
	Suggest how you would adjust the temperature and pressure to increase the yi of this reaction. Justify your answer in each case.
	Temperature
	Pressure
(ii)	State the effect of the adjustments you propose in part (i) on the rate of reaction.
	Temperature
	Pressure

	Leave blank
(iii) On the axes below, sketch the energy profiles of the reaction in (c)(i) with and without a catalyst. Label the profiles.	
Energy	
Reaction path	
(2)	
(d) Sulphur dichloride, SCl ₂ , reacts with chlorine at low temperatures to form yellow crystals of SCl ₄ , thought to consist of SCl ₃ ⁺ and Cl ⁻ ions.	
Draw a 'dot and cross' diagram for SCl ₃ ⁺ showing outer electrons only.	
	02
σ	
(2)	
(Total 14 marks)	

This	s que	estion is about the four halogenoalkanes:	L b
		 E 1-chlorobutane, CH₃CH₂CH₂CH₂Cl F 2-chloro-2-methylpropane, CH₃CCl(CH₃)CH₃ G 1-iodobutane, CH₃CH₂CH₂CH₂I H 2-iodo-2-methylpropane, CH₃CI(CH₃)CH₃ 	
(a)	(i)	Explain why 1-iodobutane has a higher boiling point than 1-chlorobutane.	
		(2)	
	(ii)	Which has the higher boiling point, 1-chlorobutane or 2-chloro-2-methylpropane? Justify your answer.	
		(2)	
	(iii)	Which of the halogenoalkanes, E , F , G or H , has the highest boiling point? Put a cross (⋈) in the box of the correct answer. If you change your mind about the answer, put a line through the box (⋈) and then mark your new answer with a	
	(iii)	Which of the halogenoalkanes, E , F , G or H , has the highest boiling point? Put a cross (⋈) in the box of the correct answer. If you change your mind about	
	(iii)	Which of the halogenoalkanes, \mathbf{E} , \mathbf{F} , \mathbf{G} or \mathbf{H} , has the highest boiling point? Put a cross (\boxtimes) in the box of the correct answer. If you change your mind about the answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes) .	
	(iii)	Which of the halogenoalkanes, \mathbf{E} , \mathbf{F} , \mathbf{G} or \mathbf{H} , has the highest boiling point? Put a cross (\boxtimes) in the box of the correct answer. If you change your mind about the answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes).	
	(iii)	Which of the halogenoalkanes, \mathbf{E} , \mathbf{F} , \mathbf{G} or \mathbf{H} , has the highest boiling point? Put a cross (\boxtimes) in the box of the correct answer. If you change your mind about the answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes) .	

Leave
hlank

nıtı	rate.			
		F G	1-chlorobutane, CH ₃ CH ₂ CH ₂ CH ₂ Cl 2-chloro-2-methylpropane, CH ₃ CCl(CH ₃)CH ₃ 1-iodobutane, CH ₃ CH ₂ CH ₂ L 2-iodo-2-methylpropane, CH ₃ CI(CH ₃)CH ₃	
(i)	Which	of the	ese halogenoalkanes would react most rapidly?	
		swer, p	\boxtimes) in the box of the correct answer. If you change you out a line through the box (\boxtimes) and then mark your new a	
	E	×		
	F	×		
	G	×		
	Н	×		
		•		(1)
(ii)	Which your a		ese halogenoalkanes would take the longest time to re	
(ii)				
(ii)				
	your a	the		eact? Justify(2)
	your a	the	functional group present in the organic product for	eact? Justify(2)

(1)

					Leave blank
(v)		of the halogenous of the halog	palkanes E, F, G and H would form a path?	precipitate	
	·-		the correct answer. If you change your rethe box (₩) and then mark your new ans		
	E and F	\boxtimes			
	E and G	\boxtimes			
	F and H	\boxtimes			
	G and H				
				(1)	
(c) (i)	Under approp	priate conditions,	, halogenoalkanes react with ammonia.		
	What are the	ese conditions?			
				(2)	
(ii)	Complete the	e balanced equation	on for the reaction of 1-iodobutane with	ammonia.	
	CH ₃ CH ₂ CH ₂	CH ₂ I + 2NH ₃	\rightarrow		
	3 2 2			(2)	
(iii) Name the org	ganic product of t	the reaction in (c)(ii).		
				(1)	Q3
			(Total 1	l6 marks)	
			TOTAL FOR SECTION A: 45		

Leave blank

SECTION B

You should aim to spend no more than 35 minutes on this section. The passage needed for this section is provided on a separate sheet.

4.			e passage on 'Fluorine' straight through and then more carefully. Answer the g questions.
	(a)	(i)	Suggest why the electrolytic cell needs to be cooled.
			(1)
		(ii)	Explain why water at 80°C is used to cool the cell rather than water at a lower temperature.
			(1)
	(b)	Giv	e the oxidation numbers of:
		Chl	orine in chlorine trifluoride
		Sul	phur in disulphur decafluoride (2)
	(c)		he production of uranium(VI) fluoride from uranium(IV) oxide, in which of the ctions is uranium oxidised?
		Just	rify your answer.
		••••	
			(1)

(d)	Suggest ONE reason for and ONE reason against the enrichment of uranium.
	(2)
e)	Describe in no more than 100 words the industrial production of fluorine.
mai ld it w	NOT asked to summarise the whole passage, nor to include equations in your ry. At the end of your summary state the number of words you have used. You write your summary on the lined pages provided in this question paper. will be given for answers written in good English, using complete sentences and using all words correctly and chemical names rather than formulae. Avoid copying long
ma ld it w nica ons an	write your summary on the lined pages provided in this question paper. will be given for answers written in good English, using complete sentences and using all words correctly and chemical names rather than formulae. Avoid copying long from the original text. Numbers count as one word, as do standard abbreviations,
ma ld it w nica ons an	NOT asked to summarise the whole passage, nor to include equations in your ry. At the end of your summary state the number of words you have used. You write your summary on the lined pages provided in this question paper. Fill be given for answers written in good English, using complete sentences and using all words correctly and chemical names rather than formulae. Avoid copying long from the original text. Numbers count as one word, as do standard abbreviations, d hyphenated words. Any title you give your passage does not count in your word
mai ld v it w ica ons an	NOT asked to summarise the whole passage, nor to include equations in your ry. At the end of your summary state the number of words you have used. You write your summary on the lined pages provided in this question paper. Fill be given for answers written in good English, using complete sentences and using all words correctly and chemical names rather than formulae. Avoid copying long from the original text. Numbers count as one word, as do standard abbreviations, and hyphenated words. Any title you give your passage does not count in your word repenalties for the use of words in excess of 100.
nai ld v it w ica ons an	NOT asked to summarise the whole passage, nor to include equations in your ry. At the end of your summary state the number of words you have used. You write your summary on the lined pages provided in this question paper. Fill be given for answers written in good English, using complete sentences and using all words correctly and chemical names rather than formulae. Avoid copying long from the original text. Numbers count as one word, as do standard abbreviations, and hyphenated words. Any title you give your passage does not count in your word repenalties for the use of words in excess of 100.
ma ld it w nica ons an	NOT asked to summarise the whole passage, nor to include equations in your ry. At the end of your summary state the number of words you have used. You write your summary on the lined pages provided in this question paper. Fill be given for answers written in good English, using complete sentences and using all words correctly and chemical names rather than formulae. Avoid copying long from the original text. Numbers count as one word, as do standard abbreviations, and hyphenated words. Any title you give your passage does not count in your word repenalties for the use of words in excess of 100.

	•••••
(Total 15	
(Total 15 TOTAL FOR SECTION B: 15 M	
TOTAL FOR PAPER: 60 M	

THE PERIODIC TABLE Group 3 4 5 6 7 0	mber of the state	C N O F Carbon Nirogen Oxygen Fluorine 12 14 16 16 119	Si P S CI Silicon Phosphorus Sulphur Chlorine 28 31 32 35.5	23 24 25 26 27 28 29 30 31 32 33 34 35 36 V Cr Mn Fe Co Ni Cu Zn Gallium Germanium Arsenic Selenium Bromine Krypton 51 52 55 56 59 59 59 635 654 70 73 75 79 80 84	41 42 43 44 45 46 47 48 49 50 51 52 53 Nb Nb TC Ru Rh Pd Ag Cd In Sh Te I Niobium Moybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Infilium Tin Antimony Tellurium Iodine 96 (99) 101 103 106 108 112 115 119 122 128 127	76 77 78 79 80 81 82 OS Ir Pt Au Hg TI Pb 0smium Iridium Platinum Gold Mercury Thallium Lead 190 192 195 197 201 204	106 Unh Umil- hexium hexium [263]	-
THE PI Group Kev	Atomic Number Symbol Name Molar mass in g mol -1			25 Mn Manganese 55	43 TC Technetium (99)	75 Re Rhenium 186		-
							1	-
				22 Ti Titanium 48	40 Zr Zirconium 91	72 Hf Hafnium 178	Und Unnil- quadium (261)	-
8	[,	Be Beryllium 9	Magnesium	Ca Scandium 40 45	Sr Yttrium Strontium 88 89	Sarium Lanthanum 137	88 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	
-	Hyd	- F		19 K Potassium (55 Cs Caesium 133	87 Fr Francium (223)	
Period	-	8	ო	4	ß	9	7	

175 103 Lr Lawrencium (257)	102 NO Nobelium (254)	169 101 Md Mendelevium (256)	167 100 Fermium (253)	99 Einsteinium (254)	98 Cf Californium (251)	97 BK Berkelium (245)	96 Cm Curium (247)	95 Americium (243)	94 Putonium (242)	93 Neptunium (237)	92 Uranium 238	91 Pa Protectinium (231)	90 Th Thorium
175	173	169	167	165	163	159	157	152	150	(147)	144	dymium 141	140
Lutetium	Ytterbium	Thulium	Erbium	Holmium	Dysprosium	Terbium	Gadolinium	Europium	Samarium	Promethium	Neodymium	Praseo-	Cerium
Ľ	Υp	ᆵ	щ	웃	۵	ΔL	рg	Eu	Sm	Pm	Š	P.	පී
11	0/	69	89	19	99	92	99	29	29	61	99	29	28

► Lanthanide elements

►► Actinide elements

