Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	2	5	1	//	0	1	Signature	

Paper Reference(s)

6251/01 **Edexcel GCE Chemistry (Nuffield)**

Advanced Subsidiary

Unit Test 1

Wednesday 8 June 2005 - Morning

Time: 1 hour 15 minutes

Materials required for examination	Items included with question papers
Nil	Nil

J	lns	tru	ctio	ons	to	Ca	nc	110	la	tes

In the boxes above, write your centre number, candidate number, your surname, initial(s) and your

Answer **ALL** questions in the spaces provided in this question paper.

Calculators may be used.

Final answers to calculations should be given to an appropriate number of significant figures.

Information for Candidates

A Periodic Table is printed on the back cover of this paper.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). The total mark for this paper is 60. There are 16 pages in this paper. All blank pages are indicated.

Advice to Candidates

You are advised to show all steps in any calculations.

You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking into account your use of grammar, punctuation and spelling.

is publication may be reproduced only in accordance with

N18610A W850/R6251/57570 7/7/6/6900

Turn over

Total

Answer ALL questions in the spaces provided.

SECTION A

	magnesium nitrate are her		
	Observation 1		
	Observation 2		
			(2)
(b)	Name ONE of the gases of and give the result.	evolved. Describe a test for t	this gas to confirm its identity
	Name of gas		
	Test and result		
			(2)
			()
(a)	(i) Give the formula of	the ion which causes an aque	
(a)		•	
(a)	(ii) Explain why a 0.11		eous solution to be alkaline.
(a)	(ii) Explain why a 0.11	mol dm ⁻³ solution of ammo	eous solution to be alkaline.
(a)	(ii) Explain why a 0.11	mol dm ⁻³ solution of ammo	eous solution to be alkaline.
	(ii) Explain why a 0.1 mol dm ⁻³ solution	mol dm ⁻³ solution of ammo	eous solution to be alkaline. (1) onia has a lower pH than a (1)
	(ii) Explain why a 0.1 mol dm ⁻³ solution	mol dm ⁻³ solution of ammo of sodium hydroxide.	eous solution to be alkaline. (1) onia has a lower pH than a (1)
	(ii) Explain why a 0.1 mol dm ⁻³ solution Using the letters P , Q and	mol dm ⁻³ solution of ammon of sodium hydroxide. If R arrange the following in the foll	cous solution to be alkaline. (1) onia has a lower pH than a (1) order of increasing pH 0.1 mol dm ⁻³

3. (a) (i) Write a balanced equation which represents the change that corresponds to the **second** ionisation energy of magnesium. Include state symbols in your answer.

(2)

(ii) The graph below shows how the **second** ionisation energy of six consecutive elements in the Periodic Table, represented by the letters **A** to **F**, varies with increasing atomic number.

Atomic number

Which of the elements, A to F, could represent magnesium?

.....

(1)

(b) Draw a 'dot and cross' diagram to show the ions in magnesium fluoride.

Include all electrons and the charges on the ions.

(2)

SA

TOTAL FOR SECTION A: 12 MARKS

SECTION B

- **4.** (a) One of the naturally occurring potassium isotopes is ³⁹K.
 - (i) Write down the numbers of protons, neutrons and electrons present in an atom of ³⁹K. Use the Periodic Table as a source of data.

protons electrons

neutrons

(2)

(ii) Write down the electronic configuration of a potassium atom using s,p,d notation.

(1)

(b) To show that potassium manganate(VII), KMnO₄, is ionic, the apparatus below can be used.

The power supply is connected for about 30 minutes.

(i) Give the formula of the coloured ion present in potassium manganate(VII), $KMnO_4$.

(1)

(11)	What would you expect to see after 30 minutes?
	(1)
(iii)	The gel was replaced with one containing copper(II) sulphate and the experiment repeated. Describe and explain what would be seen.
	(2)
	(Total 7 marks)
Diagram ada	apted from Nuffield Advanced Science Chemistry Students' Book, 4th Edition, p. 64, Fig. 3.20.

		Process 1 BaSO ₄ (s) + 4C(s) \longrightarrow BaS(s) + 4CO(g)	
	(i)	What is a possible large-scale source of carbon?	
			(1
	(ii)	Explain why carbon can be described as a reducing agent in this rea	action.
			(1
(b)		e barium sulphide, from Process 1 , can then be heated strongly in a bon dioxide and air to form barium carbonate.	mixture o
		Process 2	
		$BaS(s) + CO_2(g) + O_2(g) \longrightarrow BaCO_3(s) +$	SO ₂ (g
	Bala	ance the above equation for Process 2 .	(1
(c)		ONE of the two processes, select a product and suggest an envelopm associated with it.	vironmenta

(i)	Describe how you would obtain dry crystals of hydrated barium chloride
	BaCl ₂ .2H ₂ O, from the reaction mixture.
	(4)
(ii)	Write a balanced equation, including state symbols, for this reaction.
(11)	write a balanced equation, merading state symbols, for any reaction.
	(2)
(iii)	Calculate the number of moles of hydrochloric acid used in the experiment.
	(1)
(iv)	Calculate the mass of one mole of hydrated barium chloride, BaCl ₂ .2H ₂ O. Use
	the Periodic Table as a source of data.
	(1)
(v)	Calculate the theoretical mass of crystals which could be obtained.

	ctice.		nk
	(1)		
(e) (i) What colour do barium compounds produce in a flame test?			
(ii) When carrying out a flame test on a solid, state a suitable material on whi can be supported in the flame.	(1)		
	(1)	Q	5_
(Total 16 ma	rks)		

6. The following reaction scheme shows some of the reactions of butan-2-ol.

 $CH_2 = CHCH_2CH_3 \xrightarrow{\text{solid } \mathbf{X}} CH_3CH(OH)CH_2CH_3 \xrightarrow{\text{Na}} \mathbf{B}$ $A \qquad \qquad butan-2-ol$ $Na_2Cr_2O_7(aq)$ $and H_2SO_4(aq)$ C

(a) Why is butan-2-ol classified as a **secondary** alcohol?

(1)

- (b) Compound ${\bf A}$ can be prepared from butan-2-ol by passing its vapour over a heated solid, ${\bf X}$.
 - (i) Give the name of the organic compound **A**.

 (1)
 - (ii) Name the solid **X**.

(1)

(iii) What **type** of reaction is taking place?

(1)

			Leave blank
	(iv)	Draw a labelled diagram of the apparatus you would use to prepare and collect gas A from butan-2-ol.	
		(4)	
	(v)	Give the structural formula of another possible product of this reaction.	
		(1)	
(c)	(i)	State TWO observations which could be made while butan-2-ol is reacting with	
()	()	sodium.	
		Observation 1	
		Observation 2	
		(2)	
	(ii)	Give the molecular formula of B .	
		(1)	

Structural formula Name (2) (ii) Describe the appearance of the mixture after compound C is boiled with Benedict's solution. (1) (e) Butan-2-ol can be used to clean plastic materials, such as CDs and DVDs. Suggest ONE precaution which should be taken when using butan-2-ol in this way. (1) (Total 16 marks)	(d)	(i) Give the structural form	ula and the name of compound C.
(ii) Describe the appearance of the mixture after compound C is boiled with Benedict's solution. (1) (e) Butan-2-ol can be used to clean plastic materials, such as CDs and DVDs. Suggest ONE precaution which should be taken when using butan-2-ol in this way. (1)		Structural formula	
(ii) Describe the appearance of the mixture after compound C is boiled with Benedict's solution. (1) (e) Butan-2-ol can be used to clean plastic materials, such as CDs and DVDs. Suggest ONE precaution which should be taken when using butan-2-ol in this way. (1)		Name	
Benedict's solution. (1) (e) Butan-2-ol can be used to clean plastic materials, such as CDs and DVDs. Suggest ONE precaution which should be taken when using butan-2-ol in this way. (1)			
(e) Butan-2-ol can be used to clean plastic materials, such as CDs and DVDs. Suggest ONE precaution which should be taken when using butan-2-ol in this way. (1)			of the mixture after compound C is boiled with
(e) Butan-2-ol can be used to clean plastic materials, such as CDs and DVDs. Suggest ONE precaution which should be taken when using butan-2-ol in this way. (1)			
Suggest ONE precaution which should be taken when using butan-2-ol in this way. (1)			(1)
(1)	(e)	Butan-2-ol can be used to clea	in plastic materials, such as CDs and DVDs.
(1)		Suggest ONE precaution which	ch should be taken when using butan-2-ol in this way.
(1)			
(1)			
(Total 16 marks)			(1)
			(Total 16 marks)

7.	When solutions	of potassium	carbonate	and	calcium	chloride	are	mixed	together,	the
	following reaction	on takes place								

$$CaCl_2(aq) + K_2CO_3(aq) \longrightarrow CaCO_3(s) + 2KCl(aq)$$

(a) Re-write the above equation as an ionic equation. Include state symbols, but omit any spectator ions.

(2)

- (b) An experiment was carried out to measure the enthalpy change for this reaction. $50\,\mathrm{cm^3}$ of a $1.00\,\mathrm{mol}\,\mathrm{dm^{-3}}$ solution of potassium carbonate was added to $50\,\mathrm{cm^3}$ of a $1.00\,\mathrm{mol}\,\mathrm{dm^{-3}}$ solution of calcium chloride. The temperature fell by $1.5\,\mathrm{^{\circ}C}$.
 - (i) Calculate the energy taken in from the surroundings using the relationship

energy = mass of
$$\times$$
 specific heat capacity \times temperature solution of solution change /J /g /g /J g^{-1} °C /°C

You may assume that

- 1.0 cm³ of solution has a mass of 1.0 g.
- The specific heat capacity of the solution is $4.2~J~g^{-1}\,^{\circ}C^{-1}$.

Energy taken in = J

(1)

(ii) How many moles of calcium chloride are used in this experiment?

(1)

(iv) Which measurement is likely to have caused the major source of error in this experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment? (1) If the experiment in (b) was repeated, but using only 25 cm³ of each solution, predict what the fall in temperature would be. (1) (Total 9 marks)	experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment? (1) (1) (1) (1) (1) (1) (1) (1		ne experiment in (b) was repeated, but using only 25 cm ³ of each solution, predict the fall in temperature would be. (1) (Total 9 marks)
experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment? (1) If the experiment in (b) was repeated, but using only 25 cm ³ of each solution, predict what the fall in temperature would be.	(iv) Which measurement is likely to have caused the major source of error in this experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment? (1) (1) (1) (1) (1) (1) (1) (1		ne experiment in (b) was repeated, but using only 25 cm ³ of each solution, predict at the fall in temperature would be.
experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment? (1) If the experiment in (b) was repeated, but using only 25 cm ³ of each solution, predict	(iv) Which measurement is likely to have caused the major source of error in this experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment? (1) (1) (1) (1) If the experiment in (b) was repeated, but using only 25 cm ³ of each solution, predict		ne experiment in (b) was repeated, but using only 25 cm ³ of each solution, predict
experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment? (1)	(iv) Which measurement is likely to have caused the major source of error in this experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this experiment?	\ 1€41	
experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this	(iv) Which measurement is likely to have caused the major source of error in this experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this		
experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this	(iv) Which measurement is likely to have caused the major source of error in this experiment? Explain your answer. (1) (v) What apparatus should be used to contain the reaction mixture during this		experiment?
experiment? Explain your answer.	(iv) Which measurement is likely to have caused the major source of error in this experiment? Explain your answer.	(v)	What apparatus should be used to contain the reaction mixture during this
	(iv) Which measurement is likely to have caused the major source of error in this		(1)
	(iv) Which measurement is likely to have caused the major source of error in this		
	(iv) Which measurement is likely to have caused the major source of error in this		
(iv) Which measurement is likely to have caused the major source of error in this		(14)	
(2)		(iv)	

Atomic Number Symbol Name Nam	Nickel Signature 196 Paladium 1
--	--

					_		
11	3	Lutetium	175	103	۲	Lawrencium	(22)
70	Υp	Ytterbium	173	102	ŝ	Nobelium	(254)
69	ᆂ	Thulium	169	101	PΨ	Mendelevium	(526)
88	ъ	Erbium	167	100	표	Fermium	(253)
19	운	Holmium	165	66	Es	Einsteinium	(254)
99	۵	Dysprosium	163	88	చ	Californium	(251)
83	Δ T	Terbium	159	-64	쓢	Berkelium	(245)
\$	gg	Gadolinium	157	96	Ë	Curium	(247)
ន	ш	Europium	152	36	Am	Americium	(243)
29	Sm	Samarium	150	8	Δ.	Plutonium	(242)
19	F	Promethium	(147)	93	å	Neptunium	(237)
8	Š	Neodymium	144	92	>	Uranium	738
29	P.	Praseo-	141	91	Pa	Protactinium	(231)
88	రి	Cerium	140	6	f	Thorium	232

► Lanthanide elements

►► Actinide elements

