

Mark Scheme (Results)

Summer 2012

GCE Chemistry (6CH05) Paper 01

General Principles of Chemistry II Transition Metals and Organic Chemistry (Including synoptic assessment)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012 Publications Code UA031866

All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands
 of QWC, are being assessed. Questions labelled with an asterix (*)
 are ones where the quality of your written communication will be
 assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	D		1
2	С		1
3	Α		1
4(a)	D		1
4(b)	Α		1
5(a)	С		1
5(b)	D		1
5(c)	С		1
6	В		1
7	A		1
8	D		1
9(a)	D		1
9(b)	A		1
9(c)	D		1
9(d)	С		1
10(a)	В		1
10(b)	В		1
11(a)	В		1
11(b)	D		1
11(c)	A		1
		Total for section A	20
			marks

Section B

Question Number	Acceptable Answers	Reject	Mark
12(a)(i)	$(3 \times -120) = -360 \text{ (kJ mol}^{-1})$	No sign or + sign in answer, ie 360/+360 Any other wrong units	1
	IGNORE ΔH , and case of letters in units e.g allow Kj	ΔΕ	

Question Number	Acceptable Answers	Reject	Mark
*12(a)(ii)	 (Bonding in) benzene/it is more stable (than Kekule) by 152 kJ mol⁻¹ (consequential on (a)(i)) (1) 		4
	 π /p/double bond electrons are delocalized (around the ring) 		
	OR six p electrons shared between six (ring) carbon atoms		
	OR delocalized because of overlap of p orbitals		
	OR resonance hybrid of C=C's and C-C's (1)	Attack by	
	• Substitution reactions (rather than addition) (1)	electrophiles with no mention of	
	NOTE: Nucleophilic substitution negates the substitution mark because it is wrong additional information	substitution	
	 Maintains/regains delocalized system OR maintains/regains stability OR maintains/regains stabilization energy		

Question Number	Acceptable Answers		Reject	Mark
12(b)(i)	Concentrated nitric acid/HNO ₃	(1)		2
	Concentrated sulfuric acid/H ₂ SO ₄	(1)	Concentrated hydrochloric	
	Allow conc or c. in place of 'concentrate	ted'	acid	
	ALLOW Concentrated nitric acid and sulfuric acid			
	OR			
	Concentrated HNO ₃ and H ₂ SO ₄	(2)		
	Second mark depends on nitric acid			
	Max. (1) if no mention of concentrated	d		
	Nitric acid and concentrated sulfuric a scores (1)	cid		
	NOTE: conc. HNO_3 and $H_2SO_4(aq)$ scores (1) conc. HNO_3 and conc $H_2SO_4(aq)$ scores (2)			

Question Number	Acceptable Answers	Reject	Mark
12(b)(ii)	Electrophile/electrophilic	Acid	1
		Base	
	ALLOW Electrophyl(e)	Oxidizing agent	
		Reducing agent	

Question Number	Acceptable Answers	Reject	Mark
12(b)(iii)	$Br_2 + FeBr_3 \rightarrow FeBr_4^- + Br^+$ OR $Br-Br + FeBr_3 \rightarrow Br^{\delta +}Br^{\delta -}FeBr_3$ IGNORE state symbols even if wrong	lack of charges	4
	$Br^+/Br^{\delta+}(Br^{\delta-}FeBr_3)$ H Br $(+ FeBr_3)$		
	+ H ⁺ /HBr (+ FeBr ₃)		
	Arrow from benzene ring electrons (from inside the hexagon) to $\mathbf{Br}^+/\mathbf{Br}^{\delta+}(\dots\mathbf{Br}^{\delta-}\mathbf{FeBr}_3)$ (1)		
	Correctly drawn intermediate with delocalization covering at least three carbon atoms, but not the carbon atom bonded to the bromine with the positive charge shown inside the hexagon		
	The bonds to H and Br may be dotted (1)		
	Arrow from or close to bond to H to centre of ring and H ⁺ /HBr as a product (1)		
	ALLOW Kekulé structure for benzene and intermediate		
	Each marking point is independent		

Question Number	Acceptable Answers	Reject	Mark
12(b)(iv)	SO_3H OR $C_6H_5SO_3H$ accept: displayed -SO ₃ H -SO ₃ -H ⁺		2
	-SO₂OH		
	If two formulae are given both must be correct (1)		
	Penalise if bond clearly goes to O or H rather than S		
	Benzenesulfonic acid (1)	Benzenesulfuric acid/benzosulfonic	
	ALLOW phenyl sulfonic acid	acid/benzylsufonic acid	

Question Number	Acceptable Answers	Reject	Mark
12(c)(i)	Non-bonding/lone pair electrons from oxygen (1)	from methyl/methoxy	3
	are delocalized/incorporated/donated into the ring (electron system) (Could be shown in diagram) OR increases electron density on the ring (1)		
	makes it (the ring) more susceptible to electrophilic attack/makes it (the ring) a better nucleophile (1)	Makes it more electronegative	

Question Number	Acceptable Answers	Reject	Mark
12(c)(ii)	OH + 3Br ₂ Br + 3HBr		2
	(1) (1) organic balancing formula) J	
	ALLOW		
	 Condensed structural formulae, for example C₆H₅OH + 3Br₂ → C₆H₂Br₃OH +3HBr (1) (1) balancing 		
	• multiples		
	substitution to any positions		
	IGNORE: H ₂ O Position of bond to OH		
	NOTE: Correct balanced equations giving mono and disubstitution phenols score 1 mark		

Question Number	Acceptable Answers		Reject	Mark
12(d)	(Chloromethyl)benzene/chloromethylbenzene/chlorophenylmethane/ benzyl chloride OR dichloromethane ALLOW phenylchloromethane	/ (1)		2
	Aluminium chloride	(1)		
	ACCEPT formulae eg C_7H_7CI , $C_6H_5CH_2CI$, CH_2CI AICI ₃	2,	CH₂Cl	
	ACCEPT other halogen carriers eg FeCl ₃ /iron(III) chloride/ZnCl ₂			
	ACCEPT bromine in place of chlorine for either/both marks			
	Correct formula and wrong name or correct name and wrong formula or any other wrong additional information loses mark			

Question Number	Acceptable Answers	Reject	Mark
13(a)	$H_2NCH_2CH_2NH_2 + 2HCI \rightarrow H_3N^+CH_2CH_2NH_3^+ + 2CI^-$ (1) organic product	Covalent bond to CI, (-CI)	2
	Positive charges can be on nitrogens		
	Balancing with HCI and CI (1)		
	Chloride ions can be at ends of product ie ClH ₃ NCH ₂ CH ₂ NH ₃ Cl for right hand side, with or without charges, but if given charges must balance		
	$H_2NCH_2CH_2NH_2 + 2H^+ \rightarrow H_3N^+CH_2CH_2NH_3^+$ (2)		
	Reaction with 1 mol HCl for 1 max		
	If molecular formulae used 1 max		
	IGNORE state symbols even if wrong		

Question Number	Acceptable Answers	Reject	Mark
13 (b)(i)	Blue or green or blue-green or lavender	Any other colour e.g.	1
	ALLOW qualification of blue or green e.g. dark blue, but not with another colour e.g. blue purple	Purple Violet	

Question Number	Acceptable Answers	Reject	Mark
13(b)(ii)	The entropy change of the system is positive (1) Because there is an increase in the number of particles/entities/moles/molecules	Additional incorrect	2
	OR	numbers	
	The number of particles/entities/moles goes from four to seven	molecules/ atoms from four	
	OR Complex with three molecules goes to a complex with six molecules (1)	to seven	
	Second mark depends on a positive entropy change		

Question Number	Acceptable Answers	Reject	Mark
13(b)(iii)	They will rotate the plane of plane- polarised light (equally in opposite directions) Allow They will rotate the plane of polarised light (equally in opposite directions) OR They will rotate plane- polarised light (equally in opposite directions)	Optically active Reflect/ bend/ refract	1

Question Number	Acceptable Answers	Reject	Mark
13(c)(i)	O CCH ₂ CH ₂ C CH ₂ CH ₂		2
	Amide linkage correct (1)		
	Further detail correct, including trailing bonds (1)		
	IGNORE brackets ALLOW multiple units		
	Second mark dependent on correct amide link		
	ALLOW fully correct structural formulae for 1		
	(OCCH ₂ CH ₂ CONHCH ₂ CH ₂ NH)		
	Can start with NH group		

Question Number	Acceptable Answers	Reject	Mark
13(c)(ii)	Condensation Hydrogen chloride/HCl/water/H ₂ O or another small molecule/is produced/lost/formed/removed (as was the polymer) Mark independently	Addition/elimination	2

Question Number	Acceptable Answers	Reject	Mark
*13(c)(iii)	Types of force Hydrogen bonds		5
	<pre>and (permanent) dipole(-permanent dipole) forces</pre>	Just p.d p.d	
	and London/van der Waals'/dispersion forces OR		
	Explanation e.g temporary/induced dipoles (1)	Just v d W	
	All three needed for 1 st mark (which is given even if the forces are later explained incorrectly)		
	Hydrogen bonds (Between) the hydrogen atoms on the nitrogen atoms and OR		
	(Between) N-H and		
	(the lone pair of electrons on) oxygen/nitrogen atoms (1)		
	These marks can be shown by a diagram		
	Permanent dipole-permanent dipole forces		
	Because the C=O / carbon-oxygen bond/the C-N bond is polar/a dipole OR		
	N and/or O are electronegative atoms		
	This mark can be shown by a diagram providing the polarity of the bond is shown (1)		
	London forces Polymer has large number of/many electrons OR Explanation of	Large molecular mass alone	
	Explanation e.g temporary/induced/fluctuating dipoles (1)		

Question Number	Acceptable Answers		Reject	Mark
14(a)	Route 1 by mol of H, C and N			5
	$\frac{0.072}{18} = 0.004 \text{ mol water}$			
	OR 0.008 mol H(atoms)			
	And			
	$\frac{0.176}{44} = 0.004 \text{ mol carbon (dioxide)}$	(1)		
	$24.0 = 0.001 \text{ mol nitrogen } N_2$ 24000			
	OR			
	0.002 mol N(atoms)	(1)		
	Mass of H + mass of C + mass of N = 0.008 + 0.004 x 12 + 0.028 = 0.084 g	(1)		
	mass of oxygen = $0.132 - (0.008 + 0.004 \times 1)$			
	= 0.048 g	028)		
	amount of oxygen = $\frac{0.048}{16}$ = 0.003 mol	(1)		
	empirical formula is C ₄ H ₈ O ₃ N ₂	(1)		
	Route 2 by mass of H, C and O calculated one step	in		
	mass of H = $2/18 \times 0.072 = 0.008 g$	(1)		
	mass of C = $12/44 \times 0.176 = 0.048 g$	(1)		
	mass of N = $24/24000 \times 28 = 0.028 g$	(1)		
	mass of O = $0.132 - (0.008 + 0.048 + 0.028)$ 0.048 g) =		
	moles of $O = 0.003$	(1)		
	moles of H = 0.008			

moles of C = 0.004moles of N = 0.002

empirical formula is C₄H₈O₃N₂

(1)

Route 3 Percentage by mass of each element in 0.132 g

First three marks by either method above.

Then percentages are:

H - 6.06

C - 36.36

N - 21.21

Mole ratios

$$O - 2.27 - allow = or - 0.02$$
 (1)

Dividing by smallest gives

$$H - 4$$
, $C - 2$, $N - 1$, $O - 1.5$

empirical formula is $C_4H_8O_3N_2$ (1)

The following transferred errors are allowed:

If nitrogen gas taken as N, first two marks can still be awarded for all methods

Then mass of nitrogen is 0.014 g

This gives mass of oxygen as 0.062 g

and amount of oxygen as 0.003875 mol (1)

now empirical formula is $C_4H_8O_4N$ (1)

OR percentage method:

N - 10.61%

0 - 46.97%

 Mole ratio		
Tiole facto		
N - 0.7575		
0 - 2.935	(1)	
0 - 2.933	(+)	
empirical formula is C ₄ H ₈ O ₄ N	(1)	
Transferred error for hydrogen		
Two from first three marks still awarded		
Then amount of hydrogen is 0.004 mol		
This gives 0.003125 mol oxygen		
empirical formula is C ₄ H ₄ O ₃ N ₂	(1)	
Both the above nitrogen and hydrogen e	rrors	
Award 1 mark for correct mass of carbon or		
correct moles of carbon		
Then mass of nitrogen is 0.014 g		
Then mass of hydrogen is 0.004 g		
This gives 0.004125 mol oxygen	(1)	
Empirical formula is C ₄ H ₄ O ₄ N	(1)	

Question Number	Acceptable Answers	Reject	Mark
14(b)	(12 x 4 + 1 x 8 + 16 x 3 + 14 x 2)n = 132 n = 1		1
	So molecular formula is C ₄ H ₈ O ₃ N ₂		
	Some element of working must be shown		
	TE from (a) of nitrogen error can be given only if : $(12 \times 4 + 1 \times 8 + 16 \times 4 + 14)$ n = 132 n = 0.98		
	(which is approximately 1)		
	TE from (a) of hydrogen error can be given only if:		
	(12 x 4 + 1 x 4 + 16 x 3 + 14 x 2)n = 132 n = 1.03		
	(which is approximately 1)		
	TE from (a) of nitrogen and hydrogen error can be given only if :		
	$(12 \times 4 + 1 \times 4 + 16 \times 4 + 14)$ n = 132 n = 1.015/1.02		
	(which is approximately 1)		

Question Number	Acceptable Answers	Reject	Mark
14(c)(i)	Y reacts with HCl/acid so it is an amine /contains NH_2/CO_2 (1)	Just it is a base	3
	It reacts with alkali/NaOH so it is a carboxylic acid/contains CO_2H/NH_3^+ (1)	Just it is an acid	
	It forms a purple colour/reacts with ninhydrin so it is an amino acid (1)		
	OR		
	As it is an amine/contains NH_2/CO_2^- it will react with HCl/acid (1)		
	As it is a carboxylic acid/contains CO ₂ H/NH ₃ ⁺ it will react with alkali/NaOH (1)		
	As it is an amino acid so it forms a purple colour/reacts with ninhydrin (1)		
	Each marking point is independent and requires both the functional group and the test		
	NOTE: It is an amino acid so it reacts with acid and alkali (with neither of first two points) (1)	it is amphoteric (alone)	

Question Number	Acceptable Answers		Reject	Mark
14(c)(ii)	H H O-H	(1)	C-H-O if bond is clearly to H	2
	2-aminoethanoic acid/ aminoethanoic acid/glycine Mark independently	(1)	1 - aminoethanoic acid	

Question Number	Acceptable Answers	Reject	Mark
14 (c)(iii)	H ₂ NCH ₂ CONHCH ₂ CO ₂ H		1
	Or NH ₂ CH ₂ CONHCH ₂ CO ₂ H		
	Or HOCOCH ₂ NHOCCH ₂ NH ₂		
	ALLOW		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	H		
	Or reversed displayed formula		
	ALLOW ionic formulae with H ₃ N ⁺ and CO ₂ ⁻		

TOTAL FOR SECTION B = 48 MARKS

Question Number	Acceptable Answers	Reject	Mark
15(a)(i)	$MnO_2((s))$	Anything else eg MnO ₄ -	1

Question Number	Acceptable Answers	Reject	Mark
15(a)(ii)	 They provide alternative routes/mechanisms for reactions With lower activation energies/E_a OR catalysts lower activation energy /E_a 		2
	 So a greater proportion of /more particles/reactants have sufficient energy/E_a (to react)/greater frequency of/more successful collisions 		
	All three points 2 any two points 1		
	All points stand alone and can be in any order		
	IGNORE references to adsorption/surfaces		
	Provide alternate route with lower activation energy scores one mark		
	NOTE: The term activation energy could be described rather than stated		

Question Number	Acceptable Answers	Reject	Mark
15(a)(iii)	Transition metals form various/variable oxidation states (1)	They change oxidation state	2
	They are able to donate and receive electrons/they are able to oxidize and reduce/they are able to be oxidized and reduced /ions contain partially filled	Any mention of providing a surface/adsorption loses second mark	
	(sub-)shells of d electrons (1) ALLOW Energy differences between the oxidation states are small (for second mark)	Formation of intermediates (alone)	
	OR		
	Reduce reactant with more positive/higher electrode potential (1)		
	Then oxidize reactant with more negative/lower electrode potential (1)		
	Or other way round:		
	Oxidize reactant with lower electrode potential etc		

Question Number	Acceptable Answers	Reject	Mark
15(b)(i)	Two (less stable) oxidation states/one higher and one lower oxidation state of the same/an element react to form one(more stable) oxidation state		2
	ALLOW The reverse reaction is a disproportionation in which (one oxidation state of) the same/an element and it EITHER: reacts to give one higher and one lower oxidation state/two oxidation states OR		
	is both oxidized and reduced (1)		
	Correct oxidation states +7 and +4 to +6 Mn(VII) and Mn(IV) to Mn(VI)		
	ALLOW Mn ⁷⁺ and Mn ⁴⁺ to Mn ⁶⁺ (1)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
15(b)(ii)	(When the hydroxide ion concentration is increased) the equilibrium (of the second half equation) moves to the left/back (1) E becomes less positive/more negative/decreases/reduces (1) Therefore E_{cell} becomes positive (so reaction feasible) (1)		3
	ALLOW confusion between E, E ^o , E _{cell} if meaning is clear		

Question Number	Acceptable Answers	Reject	Mark
15 (c)(i)	Oxygen/oxygen gas/O ₂ /O ₂ (g)	O (alone) Anything else	1

Question Number	Acceptable Answers	Reject	Mark
15(c)(ii)	$2MnO_4^{-}(aq) \rightarrow 2MnO_3^{-}(aq) + O_2(g)$		2
	Entities (1) balancing (1)		
	Correct equation with H_2O and/or OH^2 on both sides (even if in brackets) max. 1	Equations including electrons	
	IGNORE state symbols ACCEPT multiples		
	ACCEPT ≠ for arrow		
	Reverse equation max. 1		
	No signs on entities max. 1		

Question Number	Acceptable Answers	Reject	Mark
15(c)(iii)	(Hazard -) the sodium hydroxide/alkali is corrosive/caustic/burns (skin)/attacks the skin OR attacks the cornea/eye/causes blindness (1) IGNORE Harmful/Irritant/toxic/hazardous/concentrated (Minimize Risk by -) wear gloves OR (full) eye protection/goggles/safety glasses (1)	MnO ₄ is toxic Cl ₂ is toxic	2
	Protection must relate to sodium hydroxide e.g. sodium hydroxide is irritant so wear gloves / eye protection scores 1 mark This means 'This experiment is dangerous so wear eye protection' score zero IGNORE lab coats and/or fume cupboards (Oxygen) gas given off so container must not be sealed (2)		

Question Number	Acceptable Answers	Reject	Mark
15(d)	Manganese(II)/manganous sulfate (solution) (1) ALLOW any named soluble manganese(II) salt – chloride, bromide, iodide, nitrate	Mn ²⁺ (aq) alone	2
	Sodium hydroxide (solution) (1) ALLOW any named soluble hydroxide ACCEPT formulae Mark independently except contradiction eg NaOH + HCI (0)	Ammonia unless dilute and added dropwise	

Question Number	Acceptable Answers		Reject	Mark
15(e)(i)	°C ××× N:			2
	Accept dots, crosses, mixture of b	oth		
	Triple bond	(1)		
	Non-bonding electrons	(1)	If not paired	
	IGNORE presence/absence of negocharge But if positive charge max 1	ative		
	Second mark dependent on first IGNORE correct inner shell electro on either or both atoms	ns	Incorrect inner shell electrons 1 max	

Question Number	Acceptable Answers		Reject	Mark
15(e)(ii)	The non-bonding / lone pair of electrons on the carbon	(1)		2
	ALLOW non-bonding/lone pair of electrons on the nitrogen			
	Forms a dative covalent/coordinate bond (to central metal ion) Mark independently	(1)		

Question Number	Acceptable Answers	Reject	Mark
15(e)(iii)	Octahedral/octahedron	Tetrahedral/hexagonal/square planar/(trigonal) bipyramid	1
	ALLOW		
	Oct o hedral		
	Oct e hedral		

TOTAL FOR SECTION C = 22 MARKS

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA031866 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE