| Surname | | | Other | Names | | | | |-----------------|------|--|-------|---------|------------|--|--| | Centre Number | | | | Candida | ate Number | | | | Candidate Signa | ture | | | | | | | For Examiner's Use General Certificate of Education January 2009 Advanced Subsidiary Examination ASSESSMENT and QUALIFICATIONS ALLIANCE # CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity Friday 9 January 2009 1.30 pm to 2.30 pm ## For this paper you must have · a calculator. Time allowed: 1 hour ### **Instructions** - Use black ink or black ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - Answer the questions in Section A and Section B in the spaces provided. Answers written in margins or on blank pages will not be marked. - Show all your working. - Do all rough work in this book. Cross through any work you do not want to be marked. - The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination. ### **Information** - The maximum mark for this paper is 60. - The marks for questions are shown in brackets. - You are expected to use a calculator where appropriate. - Write your answers to the questions in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate. # **Advice** • You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**. | For Examiner's Use | | | | | | | | |--------------------|--------------|---------------|------|--|--|--|--| | Question | Mark | Question | Mark | | | | | | 1 | | | | | | | | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | Total (Co | olumn 1) | \rightarrow | | | | | | | Total (Co | olumn 2) — | \rightarrow | | | | | | | TOTAL | | | | | | | | | Examine | r's Initials | | | | | | | # **SECTION A** Answer all questions in the spaces provided. 1 A sample of strontium contained the isotopes ⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr and ⁸⁸Sr A mass spectrum of this sample of strontium was obtained. A simplified diagram of a mass spectrometer is shown below. The line of dashes on the diagram represents the path followed by the ⁸⁷Sr⁺ ions that reach the detector. | 1 | (a) | Iden | tify the part of the mass spectrometer labelled A in the diagram. | | |---|-----|-------|---|--------------| | | | ••••• | | (1 mark) | | 1 | (b) | (i) | On the diagram, draw a line to show a path which could be followed by ⁸⁸ Sr ⁺ ions at the same time as the ⁸⁷ Sr ⁺ ions are being detected. | the (1 mark) | | 1 | (b) | (ii) | Explain why the path of the $^{88}\mathrm{Sr}^+$ ions you have drawn is different from the $^{87}\mathrm{Sr}^+$ ions. | that of | | | | | | | | | | | | | | | | | | (2 marks) | # The Periodic Table of the Elements ■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question. | | | | | | | | | | | Ι | | | | | |----------|--------------------------|------------------------|----------------|-------------------|--------------------------|--------------------|--|--------------------|-----------------------|---------------------|----------------|--------------------|------------------|---| | 0 | 4.0 He Helium 2 | 20.2
Ne | Neon
10 | 39.9
A | Argon
18 | 83.8
Ķ | Krypton
36 | 131.3
Xe | | 222.0
Rn | | | | 175.0
Lu
Lutetium | | = | | 19.0
T | Fluorine
9 | 35.5
C | Chlorine
17 | 79.9
Br | Bromine
35 | 126.9
– | lodine
53 | 210.0
At | Astatine
85 | | | 173.0
Yb
Ytterbium | | > | | 0.9 | Oxygen | .2.
0 | Sulphur
6 | 9.0
Se | Selenium
4 | 127.6
Te | Tellurium
52 | 210.0
Po | Polonium
84 | | | 168.9
Tm
Thulium | | > | | 12.0 14.0 1 | Nitrogen
7 | 31.0
T | Phosphorus Sulphur
15 | 74.9
As | Arsenic
33 | 121.8
Sb | Antimony Tellurium 51 | 209.0
B i | Bismuth
83 | | | 167.3
Er
Erbium | | ≥ | | 12.0
C | Carbon
6 |
 | Silicon
4 | 72.6
Ge | Germanium
32 | | | 207.2
Pb | | | | 164.9
Ho
Holmium | | = | | 10.8
B | Boron
5 | 27.0
A | Aluminium
13 | 69.7
Ga | Gallium
1 | 14.8
– | Indium
9 | 04.4
T | | | | 162.5
Dy
Dysprosium | | | | | | | | 65.4
Zn | Zinc
30 | 112.4
Cd | | 200.6
Hg | | | | 140.1 144.2 144.9 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 Cerium Prassodymium Noodymium Promethium Samarium Europirum Gadolinium Terbium Dysprosium Holmium Fribium Thulium Ytterbium Lutertium | | | | | | | | 63.5
Cu | Copp
29 | 107.9
Aç | Silve
47 | 197.0
Au | Gold
79 | | | 157.3
Gd
Gadolinium | | | | | | | | 58.7
N i | Nickel
28 | 106.4
Pd | Palladium
46 | 195.1
Pt | Platinum
78 | | | 152.0
Eu
Europium | | | | | | | | 58.9
Co | anium Vanadium Chromium Manganese Iron Cobalt Nickel 23 24 25 26 27 28 | 102.9
Rh | Rhodium
45 | 192.2
 r | Iridium
77 | | | 150.4 Sm Samarium | | | | | | | | 55.8
Fe | Iron
26 | 101.1
Ru | Ruthenium
44 | 190.2
Os | Osmium
76 | | | 144.9 Pm Promethium | | | | -6.9
Li | Lithium
-3 | | | 54.9
Mn | Manganese
25 | 98.9
Tc | Technetium
43 | 186.2
Re | Rhenium
75 | | | 144.2
Nd
Neodymium | | | | | | | | 52.0
Ç | Chromium
24 | 95.9
Mo | Molybdenum
42 | 183.9
W | Tungsten
74 | | | 140.9 Pr
Praseodymium | | | | relative atomic mass – | umber — | | | 50.9
V | Vanadium
23 | 92.9
Nb | Niobium
41 | 180.9
Ta | Tantalum
73 | | | Ce
Cerium | | | Key | relative a | atomic number | | | 47.9
Ti | Z2 <u>∓</u> it | 91.2
Zr | Zird | 178.5
H f | ₹ % | | | | | | | | | | | 45.0
Sc | Scandiun
21 | 88.9
× | Yttrium
39 | 138.9
La | ≒ * | 227
Ac | Actinium
89 † | nides | | = | | 9.0
Be | Beryllium
4 | 24.3
Mg | Magnesium
12 | 40.1
Ca | Calcium
20 | 87.6
Sr | Strontium
38 | 137.3
Ba | | 226.0
Ra | Radium
38 | * 58 – 71 Lanthanides | | - | 1.0 H
Hydrogen | | Lithium
3 | 23.0
Na | | 39.1
X | Ε | 85.5
Rb | | 132.9
Cs | Caesium
55 | 223.0
Fr | Francium 87 | * 58 – 71 | | | | | | | | | | | | | | | | | | * * * * * * * * * * * * * * * * * * * | 140.1 140.9 144.2 144.9 150.4 | 140.1 140.9 144.2 Ce Pr Nd | 144.2
Nd | 144.9
Pm | . = | 152.0
Eu | 157.3
Gd | | 162.5
Dy | 164.9
Ho | 167.3
Er | 168.9
Tm | 173.0
Yb | 175.0
Lu | |---------------------------------------|---------------------------------------|-----------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | | Cerium
58 | Praseodymium
59 | Neodymium
60 | Promethium
61 | rrium | Europium
63 | Gadolinium
64 | Terbium
65 | Jysprosium
6 | Holmium
37 | Erbium
68 | | Ytterbium
70 | Lutetium
71 | | | 232.0
Th | 232.0 231.0 238.0 Th Pa U | | 237.0
Np | 239.1
Pu | _ E | 247.1
Cm | | .52.1
Ç | 252)
ES | (257)
Fm | (258)
Md | _ | (260)
Lr | | T 90 – 103 Actinides | Thorium
90 | Thorium Protactinium
3 | _ | | Plutonium
34 | | | Berkelium
97 | Salifornium
18 | Einsteinium
39 | Fermium
100 | Ę | Nobelium
102 | Lawrencium
103 | Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ **Table 1** Proton n.m.r. chemical shift data | Type of proton | δ/ppm | |----------------|---------| | RCH_3 | 0.7-1.2 | | R_2CH_2 | 1.2–1.4 | | R_3CH | 1.4–1.6 | | $RCOCH_3$ | 2.1–2.6 | | $ROCH_3$ | 3.1–3.9 | | $RCOOCH_3$ | 3.7-4.1 | | ROH | 0.5-5.0 | **Table 2** Infra-red absorption data | Bond | Wavenumber/cm ⁻¹ | |----------------|-----------------------------| | С—Н | 2850–3300 | | C—C | 750–1100 | | C=C | 1620–1680 | | C=O | 1680–1750 | | С—О | 1000-1300 | | O—H (alcohols) | 3230-3550 | | O—H (acids) | 2500-3000 | | 1 | (c) | State one adjustment made to the detected. Explain your answer. | mass spe | ctrometer | to enable | e the ⁸⁸ Sr | tions to be | |---|-----|--|------------|------------|---|------------------------|------------------| | | | Adjustment | | | | | | | | | Explanation | | | | | | | | | | ••••• | ••••• | ••••••• | ••••• | (2 marks) | | 1 | (d) | The table below shows the relative strontium. | e abundar | nce of eac | h isotope | in this sa | ample of | | | | m/z | 84 | 86 | 87 | 88 | | | | | Relative abundance (%) | 0.56 | 9.86 | 7.02 | 82.56 | | | | | Use the data in the table to calcul strontium. Give your answer to o | one decim | al place. | (2 marks) | | 1 | (e) | State the block in the Periodic Ta | ble to whi | ch stronti | um belor | ngs. Expl | ain your answer. | | | | Block | ••••• | ••••• | | | | | | | Explanation | | ••••• | | ••••• | | | | | | ••••• | •••••• | ••••••••••••••••••••••••••••••••••••••• | ••••• | (2 marks) | 10 | 2 | Calc
(C ₂ F | ium carbide (CaC_2) is a solid which reacts with water to form the flammable gas ethyne I_2). | |---|---------------------------|---| | | | $CaC_2(s) + 2H_2O(1) \longrightarrow Ca(OH)_2(s) + C_2H_2(g)$ | | | | 'Carbide lamp', once used by miners, water is dripped onto calcium carbide and the ne produced is burned to provide light. | | 2 | (a) | Write an equation for the complete combustion of ethyne to form carbon dioxide and water only. | | | | (1 mark) | | 2 | (b) | A student reacted a 1.33 g sample of impure calcium carbide with an excess of water and collected the ethyne produced in a gas syringe. The volume of ethyne collected was 3.88×10^{-4} m ³ . | | | | State the ideal gas equation and use it to calculate the number of moles of ethyne collected at 284 K and 101 kPa. (The gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$) | | | | Ideal gas equation | | | | Moles of ethyne collected | (4 marks) | Question 2 continues on the next page | |---|-----|---| | | | (1 mark) | | 2 | (e) | (ii) Deduce the empirical formula of ethyne. | | | | (1 mark) | | | | | | 2 | (e) | (i) State what is meant by the term empirical formula of a compound. | | | | (1 mark) | | | | | | | | | | 2 | (d) | Use your knowledge of bonding to draw a diagram showing the bonding in a molecule of C_2H_2 | | | | (4 marks) | impure calcium carbide used by the student. (If you have been unable to obtain an answer for part (b), you should assume that the number of moles of ethyne collected was 0.0155 mol. This is not the correct value.) | | 2 | (c) | Use your answer to part (b) to calculate the mass of calcium carbide ($M_r = 64.1$) which reacted with the water. Hence, calculate the percentage purity of the 1.33 g sample of | | 2 (f) Ethyne can be used to make compound B (<i>M</i> _r = 215.8) which contains 22.24% carbon, 3.71% hydrogen and 74.05% bromine, by mass. Calculate the empirical formula of B and hence deduce its molecular formula. Empirical formula of B | |--| | Empirical formula of B Molecular formula of B | | | | | | (3 marks) | | (3 marks) | 3 | | | exist as a solid, a liquid or a gas. In some ways, liquids are similar to solids, and ays they are similar to gases. | |---|-----|-------|---| | 3 | (a) | (i) | State one way in which the movement of particles in a liquid is different from that in a solid. | | | | | (1 mark) | | 3 | (a) | (ii) | State one way in which the positioning of particles in a liquid is different from that in a gas. | | | | | (1 mark) | | 3 | (b) | Expl | ain the heat energy change associated with boiling. | | | | | | | | | ••••• | | | | | ••••• | (2 marks) | | 3 | (c) | respo | boiling points of the Group VI hydrides H ₂ O and H ₂ S are 373 K and 212 K, ectively. Water molecules form hydrogen bonds with each other but hydrogen ling does not occur between H ₂ S molecules. | | 3 | (c) | (i) | Define the term <i>electronegativity</i> . | | | | | | | | | | (2 marks) | | 3 | (c) | (ii) | Explain, in terms of electronegativity, why hydrogen bonds form between H ₂ O molecules but not between H ₂ S molecules. | | | | | | | | | | | | | | | (2 marks) | | 3 | (c) | (iii) | Explain, in terms of the intermolecular forces present, why the boiling point of H_2S is so much lower than that of H_2O | |---|-----|-------|---| | | | | | | | | | (1 mark) | | 3 | (c) | (iv) | Identify an element, other than oxygen, that when bonded to hydrogen can be involved in hydrogen bonding. | | | | | (1 mark) | | 3 | (d) | | a diagram to show how two molecules of water are attracted to each other by ogen bonding. Include partial charges and all lone pairs of electrons in your ram. | | | | | (3 marks) | | | | | Turn over for the next question | - The reactive methylene molecule (CH₂) has one lone (non-bonding) pair of electrons. An H^+ ion reacts readily with a methylene molecule to produce a CH_3^+ ion. - **4** (a) The methylene molecule can be represented as :CH₂ The equation for the reaction between H⁺ and :CH₂ is shown below. $$H^+ + :CH_2 \longrightarrow CH_3^+$$ Name the type of bond formed between a :CH₂ molecule and an H⁺ ion. Describe how this bond in the CH₃ ion is formed. **4** (b) Draw the shape, including any lone pairs of electrons, of a CH₂ molecule and the shape of a CH₃ ion. CH_2 CH_3^+ (2 marks) 4 (c) Name the shape of the CH_2 molecule and the shape of the CH_3^+ ion. Shape of CH₂..... 4 (d) State the bond angle in the CH₃ ion.(1 mark) 7 ### **SECTION B** Answer Question 5 in the space provided on pages 13–16. - 5 There are trends in the properties of the elements, both across Periods and down Groups in the Periodic Table. - 5 (a) The melting points of some of the halogens are shown in the table below. | Halogen | fluorine | chlorine | bromine | iodine | |-----------------|----------|----------|---------|--------| | Melting point/K | 53 | 172 | 266 | 387 | - 5 (a) (i) Describe the structure of, and the bonding in, solid iodine. (3 marks) - 5 (a) (ii) Explain the trend in the melting points of the halogens shown in the table above. (2 marks) - 5 (b) There are trends in the melting point and in the electrical conductivity of the metals in Period 3. Using Na and Al as your examples, state these trends and explain each trend in terms of the bonding. (6 marks) - 5 (c) There is a trend in the reactivity of the Group II elements Mg to Ba with H₂O State the conditions necessary for Mg and for Ba to react rapidly with H₂O Write equations for the reactions which occur. (4 marks) # **END OF QUESTIONS** |
 | |------| | | | | | | | | | Copyright © 2009 AQA and its licensors. All rights reserved. | |--|