Surname				Other	Names					
Centre Nu	mber				Candidate Number					
Candidate	Signat	ure								

For Examiner's Use

General Certificate of Education January 2008 Advanced Subsidiary Examination

ASSESSMENT IN A QUALIFICATIONS ALLIANCE

CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity

Thursday 10 January 2008 9.00 am to 10.00 am

For this paper you must have

· a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in **Section A** and **Section B** in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Your answers to the questions in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

F	or Exam	iner's Us	e
Question	Mark	Question	Mark
1			
2			
3			
4			
5			
6			
Total (Co	olumn 1)	→	
Total (Co	olumn 2) _	\rightarrow	
TOTAL			
Examine	r's Initials		

SECTION A

Answer all questions in the spaces provided.

1	Rela	tive at	tomic mass can be determined using a mass spectrometer.	
	(a)	Defi	ne the term relative atomic mass.	
		•••••		(2 marks)
	(b)		btain the mass spectrum of an element, a gaseous sample of the element onised. The ions produced are then accelerated, deflected and detected.	must first
		(i)	State what is used to accelerate ions in a mass spectrometer.	
		(ii)	State what is used to deflect ions in a mass spectrometer.	
		(iii)	Explain how the ions are detected in a mass spectrometer.	
				(3 marks)

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

Hall														
H	0	4.0 He Helium 2	20.2 Ne	Neon 10	39.9 A	Argon 18	83.8 7	Kryptor 36	131.3 Xe	Xenon 54	222.0 Rn	Radon 86		
H	=		19.0 T	Fluorine 9	35.5 2	Chlorine 17	79.9 Br	Bromine 35	126.9 –	lodine 53	210.0 At	Astatine 85		
H Feb	>		16.0 O	Oxygen 8	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84		
H Feb	>		0.41 Z	Nitrogen 7	31.0 P	Phosphorus 15	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83		
H Feb	≥		12.0 C	Carbon 6	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82		
H Feb	=		10.8 B	Boron 5	27.0 AI	Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium 49	204.4 TI	Thallium 81		
Feb.							65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg	Mercury 80		
Feet							l							
Headium Retorman February							58.7 N	Nickel 28	106.4 Pd	Palladium 46	195.1 Pt	Platinum 78		
H							58.9 C	Cobalt 27	102.9 Rh	Rhodium 45	192.2 r	Iridium 77		
H							55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76		
H			6.9 Li	Lithium 3			54.9 Mn	Manganese 25	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75		
H							52.0 Ç	Chromiur 24	95.9 Mo	Molybdenu 42		Tungsten 74		
9.0 Be Beryllium 4 4 4 4 4 4 40.1 Calcium 12 Calcium 20 Calcium 20 Calcium 20 Calcium 30 Strontium 38 Calcium 39 Calcium Adrium 88 Rad Ac			tomic ma	umber —				Vanadium 23	92.9 Nb	Niobium 41		Ε		
9.0 Be Beryllium 4 24.3 Mg Magnesium 12 Calcium 20 Calcium 20 Calcium 20 Sr Sr Sr Sr Strontium 39 137.3 138.9 Ba Lanthanum 56 Barium 12 Calcium 21 22 22 22 22 22 22 22 24 24 24 24 25 26 27 27 28 28 88 89 40 88		Key	relative a	atomic nı			47.9 Ti	Titanium 22	91.2 Zr	Zirconium 40		Hafnium 72		
Be Beryllium 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4							45.0 Sc	Scandium 21					227 Ac	Actinium 89 †
Lithium vdrogen Navdrogen	=		9.0 Be	Beryllium 4	24.3 Mg	Magnesium 12	40.1 Ca	Calcium 20	87.6 Sr	Strontium 38				Radium 88
1.6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	1.0 H Hydrogen	6.9 Li	Lithium 3		_	39.1 X	Potassium 19	85.5 Rb		132.9 Cs		223.0 Fr	Francium 87

* FO **	140.1 Ce	140.9 Pr	Ce Pr 140.9 144.2 144.	₆ ٤	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 Dy	164.9 Ho	167.3 Er	168.9 Tm	173.0 Yb	175.0 Lu
30 - 71 Edillidindes	Cerium 58	Praseodymium 59	Praseodymium Neodymium Promethium 59 60 61		E	Europium 53	Gadolinium 64	Terbium 65	Jysprosium 36	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
	232.0 Th	231.0 Pa	232.0 231.0 238.0 237.0 Th Pa U Ng		239.1 Pu	_ E	247.1 Cm	247.1 Bk	252.1 Ç	(252) Es	(257) Fm	(258) Md	(259) No	(260) Lr
T 90 - 103 Actinides	Thorium 90	Protactinium 91	Protactinium Uranium Neptu 91 92 93	iinm	Ε	Americium 95	Curium 96	Berkelium 97	Saliforniu 38	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

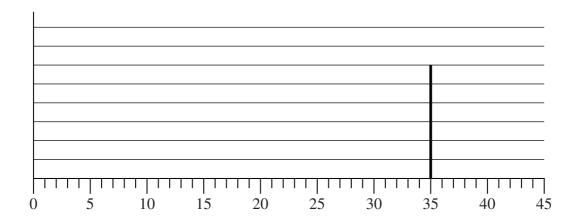

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
RCOCH ₃	2.1–2.6
$ROCH_3$	3.1–3.9
RCOOCH ₃	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500-3000

(c) A sample of chlorine was placed in a mass spectrometer. In this sample of chlorine, 75 % of the atoms were ³⁵Cl atoms and 25 % were ³⁷Cl atoms.

The mass spectrometer detected only Cl⁺ ions and Cl²⁺ ions. The spectrum obtained contained four peaks. The diagram below is an incomplete spectrum, showing only the peak produced by the ³⁵Cl⁺ ions.

- Label both axes on the diagram.
- (ii) Complete this diagram to show the remaining three peaks in the mass spectrum of the chlorine sample.

(5 marks)

Turn over for the next question

(4 marks)

2 Sodium carbonate neutralises hydrochloric acid as shown in the equation below.

$$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$$

Sodium carbonate is used to neutralise a 100 cm³ sample of 1.75 mol dm⁻³ (a) hydrochloric acid. (i) Calculate the number of moles of HCl in the 100 cm³ sample of 1.75 mol dm⁻³ hydrochloric acid. Deduce the number of moles, and hence calculate the mass, of Na₂CO₃ $(M_{\rm r} = 106.0)$ required to neutralise this sample of hydrochloric acid. Moles of Na_2CO_3 Mass of Na_2CO_3 (3 marks) Hydrated sodium carbonate has the formula Na₂CO₃.10H₂O (b) Calculate the percentage, by mass, of Na₂CO₃ in hydrated sodium carbonate. Calculate the mass of hydrated sodium carbonate required to neutralise 0.267 mol of hydrochloric acid.

(c)	A sample of sodium carbonate reacted with hydrochloric acid to produce $7.75 \times 10^{-2} \text{mol}$ of CO_2
	State the ideal gas equation and use it to calculate the volume of $\rm CO_2$ produced, at 298 K and 101 kPa, in this reaction.
	Ideal gas equation
	Volume of CO ₂ produced
	(4 marks)

Turn over for the next question

3	(a)	A Pe	eriod 3 element, E , forms an w.	ion E ²⁻ v	which has	the elec	tron arra	ngemen	t shown
			$1s^2$	$2s^22p^63s^2$	$^23p^6$				
		Give	the electron arrangement of	an atom	of eleme	nt E and	identify	this ele	ment.
		Elec	tron arrangement of an atom	of E					
		Iden	tity of E						
	<i>a</i> .	TO!				10.1		C1	(2 marks)
	(b)		e is a trend in the electroneg		the Perio	od 3 elen	nents Na	to Cl	
		(i)	Define the term <i>electronego</i>	•					
				•••••	••••••	••••••	••••••	••••••	•••••••
				••••••	••••••	••••••	••••••	••••••	•••••••
		(ii)	State and explain the trend Na to Cl	in the ele	ectronega	tivity of	the Perio	d 3 eler	nents
			Trend						
			Explanation						
		_							(5 marks)
	(c)	Som	e electronegativity values are	e given be	elow.			1	
				Н	F	Cl	Br	I	
			Electronegativity value	2.1	4.0	3.0	2.8	2.5	
		(i)	Explain why the covalent b	ond in H	F is pola	r.			
				•••••	•••••	•••••	•••••	•••••	•••••
						•••••		•••••	
		(ii)	State and explain the trend halides HF, HCl, HBr and I	-	y of the	covalent	bonds in	the hyd	lrogen
			Trend					•••••	
			Explanation	•••••	•••••	•••••	•••••		•••••
						•••••		•••••	(3 marks)
									(Simurs)

(d) The boiling points of some hydrogen halides are shown in the table below.

Hydrogen halide	HF	HC1	HBr	HI
Boiling point/K	293	188	206	238

Explain, in terms of the intermolecular forces present, why

	(i)	the boiling point of HF is much higher than those of the other hydrogen halides.
	(ii)	the boiling points increase from HCl to HI
		(6 marks)
(e)	Chlo	ride ions are polarised by cations.
	(i)	State the meaning of the term <i>polarised</i> as applied to a Cl ⁻ ion.
	(ii)	State a feature of a cation that would cause the Cl ⁻ ion to be polarised strongly.
		(2 marks)

follo	lution contains both sodium carbonate and sodium sulphate. Dilute hydrochloric acid, wed by dilute aqueous barium chloride, is added to this solution to confirm the presence arbonate ions and sulphate ions.
(a)	State what would be observed when an excess of dilute hydrochloric acid is added to this mixture. Identify the product responsible for this observation. Write an equation for the reaction which occurs.
	Observation
	Product
	Equation
	(3 marks)
(b)	State what would be observed when an excess of dilute aqueous barium chloride is added to the solution formed in part (a). Identify the product responsible for this observation. Write an equation for the reaction which occurs.
	Observation
	Product
	Equation
	(3 marks)

SECTION B

Answer **both** questions 5 and 6 in the space provided on pages 12–16.

5	(a) Evaloin why the chang of the NU ⁺ ion is regular tetrahedral. Evaloin why the he	
5	(a)	Explain why the shape of the NH ₄ ion is regular tetrahedral. Explain why the bond angle in the NH ₃ molecule is less than that in the NH ₄ ion.
		(4 marks)
	(b)	
		produced by the arrangement of atoms in the NH_2^- ion. (2 marks)
6	(a)	
		high. (4 marks)
	(b)	Select any two of the Period 3 elements phosphorus, sulphur and chlorine. State and
		explain which of your selected elements has the higher melting point. (5 marks)
		END OF QUESTIONS
•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	••••••	
•••••	• • • • • • • •	
•••••	• • • • • • • • •	
•••••	••••••	
•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	••••••	

•••••
•••••
•••••
 •••••
•••••
 •••••
 •••••

•••••
•••••
•••••
 •••••
•••••
 •••••
 •••••
