Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signatur	е						

General Certificate of Education June 2007 Advanced Level Examination

CHEMISTRY Unit 6a Synoptic Assessment

CHM6/W

Monday 25 June 2007 9.00 am to 10.00 am

For this paper you must have:

- · an objective test answer sheet,
- · a calculator.

Time allowed: 1 hour

Instructions

- Use a blue or black ball-point pen. Do **not** use pencil.
- Fill in the boxes at the top of this page.
- Answer all 40 questions.
- For each item there are four responses. When you have selected the response which you think is the best answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book, **not** on your answer sheet.
- Make sure that you hand in **both** your answer sheet **and** this answer book at the end of this examination.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- Each correct answer will score one mark. No deductions will be made for wrong answers.
- This paper carries 10 per cent of the total marks for Advanced Level.

Advice

• Do not spend too long on any question. If you have time at the end, go back and answer any question you missed out.

Multiple choice questions

Each of Questions 1 to 21 consists of a question or an incomplete statement followed by four suggested answers or completions. You are asked to select the most appropriate answer in each case.

Questions 1 and 2

 $P(g) \rightleftharpoons 2Q(g)$ ΔH° is positive

- 1 The mole fraction of Q in the above equilibrium can be increased by
 - **A** decreasing the temperature.
 - **B** adding a catalyst.
 - C increasing the volume of the reaction vessel.
 - **D** increasing the pressure.
- 2 1.0 mol of P was placed in a sealed vessel and left until the above equilibrium was established. At equilibrium, a total of 1.5 mol of gas were present. The mole fraction of Q at equilibrium was
 - **A** 0.33
 - **B** 0.50
 - **C** 0.67
 - **D** 0.75
- 3 The following compounds all have $M_r = 88$. Which one contains over 60% by mass of carbon and also exhibits hydrogen bonding?
 - $\mathbf{A} \quad \mathbf{H}_2\mathbf{N}(\mathbf{C}\mathbf{H}_2)_4\mathbf{N}\mathbf{H}_2$
 - **B** CH₃CH₂CH₂COOH
 - C CH₃CH₂CH₂CH₂CH₂OH

$$\begin{array}{ccc}
 & \text{H} & \text{F} \\
 & \text{D} & \text{H}_2\text{C} & \text{CH}_2 \\
 & \text{H}_2\text{C} & \text{CH}_2
\end{array}$$

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

											_		
0	4.0 He Helium 2									222.0 Rn	Radon 86		
=		19.0 T	Fluorine 9	35.5 2	Chlorine 17	79.9 Br	Bromine 35	126.9 –	lodine 53	210.0 At	Astatine 85		
5		0.91 O	Oxygen 3	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 34		
>		0.4 Z	Nitrogen Oxygen 9	31.0 P	hosphorus	74.9 As	Arsenic 33	21.8 Sp	Antimony 51		Bismuth 83		
≥		ر د ا	Boron Carbon 7	- S	Silicon 1	72.6 Ge	Germanium 32	Sn	70 Tin	207.2 2	Lead 82		
=		a	Boron	27.0 AI	Aluminium 13	39.7 Ga	Gallium Gallium G	-14.8 -	mnipul 6t	204.4 T	Thallium 81		
		1	υ,	144	- -	35.4 (Zinc 30	112.4 Cd	Cadmium 4	200.6 Hg	Mercury 8		
							Copper 29			197.0 Au			
						. E	Nickel 28	. Pd	Palladium 46	195.1			
						6.83 6.83	Cobalt 27	. Rh	Rhodium 45	192.2	lridium 77		
						55.8 Fe	lron 36	-: B	Ruthenium 44	90.2 Os	Osmium 76		
		6.9 Li	Lithium 3			54.9 Mn	Manganese Iron Cobalt 25 27	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75		
						52.0 C	Chromium 24	95.9 Mo	Molybdenum 42	183.9 W	Tungsten 74		
		tomic ma	ımber —			5 0.9		92.9 N		180.9 Ta			
	Key	relative atomic mass -	atomic number			47.9	Titanium 22	91.2 Zr	Zirconium 40	178.5 H	Hafnium 72		
	_	_	.0			45.0 Sc		88.9 \	Yttrium 39	138.9 La	Lanthanum 57 *	227 Ac	Actinium 89 †
=		9.0 Be	Beryllium 4	24.3 Mg		40.1 Ca		87.6 S	Strontium 38	137.3 Ba	_		
-	1.0 H Hydrogen	6.9 Li	Lithium 3		Sodium 11	39.1 X	_	85.5 8	_	132.9 Cs		223.0 2	Francium 87
			/	1 - 4	-	1	•	1	•••	1		1	

- VI	140.1 Ce	140.9 Pr	144.2 Nd	144.9 Pm	150.4 Sm	150.4 152.0 1	57.3 Gd	158.9 Tb	162.5 Dy	164.9 Ho	37.3 E	168.9 Tm	173.0 Yb	175.0 Lu
36 – 71 Lanmanides	Cerium P	Praseodymium 59	Neodymium 60		Samarium 62	m Europium 63	adoliniu 4	Terbium 65	Dysprosium 66	Holmium 67	Erbium 3	Thulium 69	Ytterbium 70	Lutetium 71
-	232.0 Th	232.0 231.0 238.0 Th Pa U	238.0 U	237.0 J	239.1 Pu	_	247.1 Ca	247.1 Bk	247.1 252.1 (252) (2 Bk Cf Es	(252) Es	57) Fm	(258) Md	(259) No	(260) Lr
† 90 – 103 Actinides	Thorium 90	Protactinium 91	Thorium Protactinium Uranium 91	Neptunium 93	Plutonium 94	Americium 95	Curium 36	Berkelium 97	Californium 98	Einsteinium 99	ermium 00	Mendeleviur 101	n Nobelium Lawrencium 102 103	Lawrencium 103

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500-3000

4 CaCl₂(s) has a standard lattice dissociation enthalpy of +2237 kJ mol⁻¹

The standard enthalpy of hydration values for $Ca^{2+}(g)$ and $Cl^{-}(g)$ are -1650 kJ mol^{-1} and -364 kJ mol^{-1} , respectively.

The standard enthalpy of solution of CaCl₂(s) is

- $\mathbf{A} = -223 \text{ kJ mol}^{-1}$
- **B** -141 kJ mol^{-1}
- $C + 141 \text{ kJ mol}^{-1}$
- **D** $+223 \text{ kJ mol}^{-1}$

5 Ions of two isotopes of the transition metal nickel are shown below.

$$^{58}_{28}\text{Ni}^{2+}$$
 $^{60}_{28}\text{Ni}^{2+}$

Which one of the following statements is correct?

- **A** The electron arrangement of both these Ni^{2+} ions is $1s^22s^22p^63s^23p^63d^64s^2$.
- **B** The $^{60}_{28}$ Ni²⁺ ion will have more protons in its nucleus than the $^{58}_{28}$ Ni²⁺ ion.
- C In the same strength magnetic field, the ${}^{60}_{28}\mathrm{Ni}^{2+}$ ion will be deflected more than the ${}^{58}_{28}\mathrm{Ni}^{2+}$ ion.
- **D** These Ni²⁺ ions have the same number of electrons but a different number of neutrons.

Questions 6 and 7

In questions 6 and 7 consider the data below.

$$E^{\circ}/V$$

Cu²⁺(aq) + 2e⁻ → Cu(s) +0.34
Ni²⁺(aq) + 2e⁻ → Ni(s) -0.25
Zn²⁺(aq) + 2e⁻ → Zn(s) -0.76

- 6 The e.m.f. of the cell $Cu(s)|Cu^{2+}(aq)||Ni^{2+}(aq)||Ni(s)|$ is
 - **A** 0.59 V
 - **B** 0.09 V
 - C -0.09 V
 - D -0.59 V
- 7 Which one of the following reactions occurs?

$$\mathbf{A} \quad \text{Cu(s)} \, + \, 2\text{H}^+(\text{aq}) \, \longrightarrow \, \text{Cu}^{2+}(\text{aq}) \, + \, \text{H}_2(\text{g})$$

$$\textbf{B} \hspace{0.5cm} \text{H}_2(g) \hspace{0.1cm} + \hspace{0.1cm} \text{Ni}^{2+}(aq) \hspace{0.1cm} \longrightarrow \hspace{0.1cm} \text{Ni}(s) \hspace{0.1cm} + \hspace{0.1cm} 2\text{H}^+(aq)$$

$$C \hspace{0.5cm} \text{Cu(s)} \hspace{0.1cm} + \hspace{0.1cm} \text{Ni}^{2+}(\text{aq}) \hspace{0.1cm} \longrightarrow \hspace{0.1cm} \text{Cu}^{2+}(\text{aq}) \hspace{0.1cm} + \hspace{0.1cm} \text{Ni}(\text{s})$$

$$\textbf{D} \hspace{0.5cm} Zn(s) \hspace{0.1cm} + \hspace{0.1cm} Ni^{2+}(aq) \hspace{0.1cm} \longrightarrow \hspace{0.1cm} Zn^{2+}(aq) \hspace{0.1cm} + \hspace{0.1cm} Ni(s)$$

Questions 8 and 9

The following reaction is used in industry to prepare aspirin

- **8** Which one of the following statements about ethanoic anhydride is **not** correct?
 - **A** It has two singlets only in its proton n.m.r. spectrum.
 - **B** It undergoes hydrolysis in water to give a single product with a pH value less than 7.
 - C It has a strong absorption at about 1720 cm⁻¹ in its infra-red spectrum.
 - **D** It has a major fragment peak at m/z = 43 in its mass spectrum.
- **9** 2-Hydroxybenzoic acid and aspirin are both white solids. Which one of the following would **not** distinguish between pure samples of these two solids?
 - A comparing the laboratory-determined melting points to data-book values
 - **B** comparing infra-red spectra at 3250 cm⁻¹
 - C comparing their effects on sodium carbonate
 - **D** comparing the m/z values of their molecular ions
- 10 Which one of the following statements is correct?
 - **A** There are only three isomers of dichloropropane.
 - **B** There are geometric isomers of 2-methylpent-2-ene.
 - C There are optical isomers of 2-aminopropanoic acid.
 - **D** Enantiomers can be distinguished using the fingerprint region of their infra-red spectra.

Aluminium chloride acts as a weak monoprotic acid in aqueous solution and has a K_a value of $1.26 \times 10^{-5} \,\mathrm{mol}\,\mathrm{dm}^{-3}$

What concentration, in $mol dm^{-3}$, of aluminium chloride will produce a solution with a pH value of 2.60?

- **A** 0.0050
- **B** 0.50
- **C** 0.53
- **D** 2.0
- 12 Which one of the following statements is correct?
 - A AlCl₃ has a higher melting point than Al₂O₃
 - **B** The Al₂Cl₆ dimer contains two co-ordinate bonds.
 - C AlCl₃ is pyramidal.
 - **D** The AlCl₃ catalyst acts as an electron pair donor in the acylation of benzene.
- 13 Which one of the following isomeric alkenes is formed when 3-bromo-2-methylpentane reacts with ethanolic potassium hydroxide?
 - **A** 3-methylpent-1-ene
 - **B** 3-methylpent-2-ene
 - C 4-methylpent-2-ene
 - **D** 2-ethylbut-1-ene

14 Sulphur dichloride oxide, SOCl₂, can be used to convert alcohols into chloroalkanes.

$$CH_3CH_2OH + O = S$$
 Cl
 $CH_3CH_2Cl + O = S = O + HCl$

Bond	Mean bond enthalpy/kJ mol ⁻¹
C-Cl	338
C-O	364
H–Cl	431
О–Н	464
S-Cl	277
S=O	523
C-C	348
C-H	412

The enthalpy change, in kJ mol⁻¹, for the gas phase reaction between ethanol and sulphur dichloride oxide using the bond enthalpies given above is

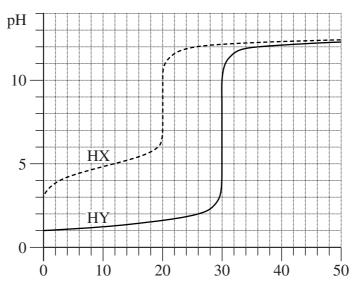
- A -187
- **B** -90
- **C** +90
- **D** +187

Turn over for the next question

Questions 15 to 17

A car airbag contains sodium azide, NaN₃, and potassium nitrate. Sodium azide decomposes to produce nitrogen gas and sodium metal.

$$2NaN_3(s) \longrightarrow 2Na(s) + 3N_2(g)$$


The sodium produced reacts immediately with the potassium nitrate producing more nitrogen.

$$10\text{Na(s)} + 2\text{KNO}_3(\text{s}) \longrightarrow \text{N}_2(\text{g}) + 5\text{Na}_2\text{O}(\text{s}) + \text{K}_2\text{O}(\text{s})$$

- 15 The total number of moles of nitrogen produced by 1.0 mol of sodium azide in this sequence is
 - **A** 1.0
 - **B** 1.5
 - **C** 1.6
 - **D** 4.0
- 16 The number of moles of nitrogen needed to produce a pressure of 200 kPa in an airbag of volume 0.060 m³ at a temperature of 27 °C is
 - **A** 0.21
 - **B** 4.8
 - **C** 54
 - **D** 4800
- 17 An element which undergoes oxidation in the above reactions is
 - A sodium in NaN₃
 - **B** potassium in KNO₃
 - C oxygen in KNO₃
 - **D** nitrogen in NaN₃

Questions 18 and 19

Use the curves below, obtained using equal volumes of solutions of two monoprotic acids **HX** and **HY**, to answer Questions **18** and **19**.

Volume of 0.10 mol dm⁻³ NaOH(aq) added/cm³

- 18 Which one of the following statements about a solution of HX is correct?
 - A It is less concentrated and contains a weaker acid than the solution of HY.
 - **B** It is more concentrated and contains a stronger acid than the solution of HY.
 - C It is more concentrated and contains a weaker acid than the solution of HY.
 - **D** It is less concentrated and contains a stronger acid than the solution of HY.
- 19 The value, in mol dm⁻³, of K_a for the acid HX is
 - **A** 1.3×10^{-2}
 - **B** 1.0×10^{-3}
 - C 1.3×10^{-5}
 - **D** 8.3×10^{-6}

- 20 Which one of the following statements about carbon monoxide is **not** correct?
 - **A** It has a positive enthalpy of combustion.
 - **B** It is formed during the incomplete combustion of alkanes.
 - C It is oxidised to carbon dioxide when heated strongly with iron(III) oxide.
 - **D** Compared with an oxygen molecule, it can form a stronger co-ordinate bond with iron(II) in haemoglobin.
- 21 Locate the element tungsten (W) in the Periodic Table.

Which one of the following explains why tungsten is a poor catalyst?

- **A** It exists only in one oxidation state.
- **B** It has an incomplete d sub-level.
- **C** It has no active sites on its surface.
- **D** Reacting molecules are adsorbed strongly onto its surface.

Multiple completion questions

For each of Questions **22** to **40**, **one or more** of the options given may be correct. Select your answer by means of the following code.

- A if 1, 2 and 3 only are correct.
- **B** if **1** and **3** only are correct.
- C if 2 and 4 only are correct.
- **D** if **4** only is correct.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

22 The extraction of titanium from titanium(IV) oxide involves two reactions represented by the following equations

$$TiO_2 + 2C + 2Cl_2 \rightarrow TiCl_4 + 2CO$$

 $TiCl_4 + 4Na \rightarrow Ti + 4NaCl$

Correct statements about the extraction include

- 1 149.6 kg of chlorine are needed to make 200.0 kg of titanium(IV) chloride ($M_r = 189.9$).
- **2** both of the above equations represent redox reactions.
- 3 titanium is expensive because the extraction involves a batch process.
- 4 the second reaction is carried out in an atmosphere of nitrogen to prevent oxidation of the product.
- 23 Anhydrous compounds of Period 3 elements that react with water to give solutions with a pH value less than 5 include
 - 1 ionic chlorides.
 - 2 covalent chlorides.
 - 3 ionic oxides.
 - 4 covalent oxides.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 24 Correct statements about concentrated sulphuric acid include
 - 1 it reacts with butan-2-ol to form but-1-ene.
 - 2 it is reduced to hydrogen sulphide by solid sodium iodide.
 - 3 it can protonate concentrated nitric acid.
 - 4 it reacts with sodium chloride to form chlorine gas.

Questions 25 to 27 are about the synthesis and reactions of compounds M and N shown below.

- 25 Correct statements about the reaction scheme include
 - 1 Step (i) could be achieved using chlorine in the presence of ultra-violet light.
 - 2 Step (ii) could be achieved using potassium cyanide.
 - 3 Step (iv) could be achieved using hydrogen in the presence of nickel.
 - 4 K could be converted directly into N using ammonia.
- 26 Correct statements about M include
 - 1 it can form a condensation polymer with 1,6-diaminohexane.
 - 2 complete reaction of 0.0100 mol of M requires 10.0 cm³ of 1.00 mol dm⁻³ NaOH(aq)
 - 3 it can act as a bidentate ligand.
 - 4 its systematic name is ethanedioic acid.

	Directions s	ummarised	
A	В	С	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

27 Correct statements about N include

- 1 it exists as the ion HOOCCH₂CH₂NH₃ in a solution at pH 14.
- 2 it reacts with methanol to form a tetraalkylammonium salt.
- 3 it reacts with ethanoyl chloride to form an ester.
- 4 it undergoes self-polymerisation.

28 Results which support the identification of an unknown compound as propyl methanoate include

- 1 a strong absorption in its infra-red spectrum at $1740 \,\mathrm{cm}^{-1}$.
- 2 a singlet peak integrating for three protons in its proton n.m.r. spectrum.
- 3 the compound contains 54.54% of carbon by mass.
- 4 it effervesces with sodium hydrogencarbonate.

29 Consider the species in the following equation.

$$\left[{\rm Ti}({\rm H}_2{\rm O})_4{\rm Cl}_2 \right]^+\!({\rm aq}) + 2{\rm H}_2{\rm O}({\rm l}) \implies \left[{\rm Ti}({\rm H}_2{\rm O})_6 \right]^{3+}\!({\rm aq}) + 2{\rm Cl}^-\!({\rm aq})$$

Correct statements include

- 1 water acts as a Lewis base.
- 2 the complex ions are both octahedral.
- 3 the $[Ti(H_2O)_6]^{3+}$ ion can act as a Brønsted-Lowry acid.
- 4 the electron arrangement of the Ti³⁺ ion is [Ar]4s¹

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

30 Optical isomerism is shown by

$$\begin{array}{ccc} & & & H & & \\ & & | & & \\ C_6H_5 - N^+ - CH_2CH_3 & & & \\ & & | & & \\ CH_3 & & & \\ \end{array}$$

$$\begin{array}{ccc} & & & H & CH_3 \\ & & & C=C & H \end{array}$$

31 Species with four or more atoms in the same plane include

- 1 cisplatin.
- **2** but-2-ene.
- 3 benzene.
- 4 an ammonium ion.

	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

32 For the reaction represented by the equation shown below,

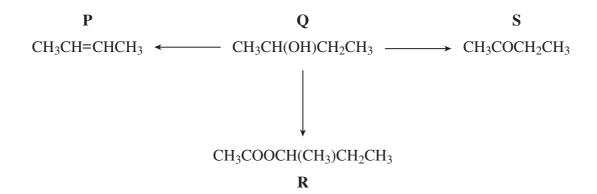
$$2H_2(g) + 2NO(g) \longrightarrow 2H_2O(g) + N_2(g)$$

the rate equation is

rate =
$$k[H_2][NO]^2$$

Assuming that each 10 K rise in temperature doubles the rate, which of the following will increase the rate by a factor of four?

- a 20 K temperature increase, keeping [H₂] and [NO] constant.
- 2 a 10 K temperature increase with $2 \times [H_2]$, keeping [NO] constant.
- 3 no temperature change but with $4 \times [H_2]$, keeping [NO] constant.
- 4 a 10 K temperature increase with $2 \times [NO]$, keeping $[H_2]$ constant.
- 33 Which of the following increase(s) down Group VII?
 - 1 the electronegativity of the halogen
 - 2 the lattice dissociation enthalpy of the sodium halide
 - 3 the oxidising ability of the halogen
 - 4 the strength of the halide ion as a reducing agent
- **34** Correct statements include
 - 1 the base strength increases from methylamine to ammonia to phenylamine.
 - 2 the melting point increases from pentan-3-one to pentan-2-ol to 2-aminopropanoic acid.
 - 3 the carbon to carbon bond enthalpy increases from ethene to benzene to ethane.
 - 4 the pH of a 1.0 mol dm⁻³ solution increases from sulphuric acid to hydrochloric acid to ethanoic acid.


	Directions s	ummarised	
A	В	C	D
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct

- 35 Solids that have a macromolecular structure include
 - 1 MgO
 - 2 C₁₇H₃₅COONa
 - **3** P₄O₁₀
 - 4 Si
- 36 Equations that represent redox reactions include
 - 1 Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂
 - 2 $[V(H_2O)_4Cl_2]^+ + 2H_2O \rightarrow [V(H_2O)_6]^{3+} + 2Cl^-$
 - $3 \quad \text{Mg} + \text{S} \rightarrow \text{MgS}$
 - 4 $CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$

Directions summarised				
A	В	С	D	
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct	

Questions 37 and 38

Use the following reaction scheme to answer questions 37 and 38.

- 37 Compounds that have stereoisomers include
 - 1 P
 - 2 Q
 - **3** R
 - 4 S
- **38** Types of reaction in the scheme include
 - 1 dehydration.
 - 2 hydrogenation.
 - 3 esterification.
 - 4 alkylation.

Directions summarised				
A	В	C	D	
1, 2 and 3 only correct	1 and 3 only correct	2 and 4 only correct	4 only correct	

39 Conversions that require four moles of hydrogen gas per mole of starting material include

1
$$\sim$$
 CH=CH₂ \sim CH₂CH₃

2
$$N \equiv C(CH_2)_4 C \equiv N$$
 \longrightarrow $H_2N(CH_2)_6 NH_2$

4
$$\langle \bigcirc \rangle$$
 NO₂ \longrightarrow $\langle \bigcirc \rangle$ NH₂

- 40 Correct statements about chloroethanoic acid include
 - 1 it gives an immediate white precipitate with silver nitrate solution.
 - 2 it gives a silver mirror with Tollens' reagent.
 - 3 it gives colourless fumes on addition of water.
 - 4 a mixture of acidified potassium dichromate(VI) and the acid remains orange on warming.

END OF QUESTIONS