Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signatur	е						

For Examiner's Use

General Certificate of Education June 2007 Advanced Subsidiary Examination

CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry

Wednesday 6 June 2007 9.00 am to 10.00 am

For this paper you must have

· a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer questions in **Section A** and **Section B** in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for each question are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the question in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

F	or Exam	iner's Us	е
Question	Question	Mark	
1			
2			
3			
4			
5			
Total (Co	olumn 1)	\rightarrow	
Total (Co	olumn 2) _	\rightarrow	
TOTAL			
Examine	r's Initials		

SECTION A

Answer all questions in the spaces provided.

1	(a)	(i)	energies	xes below, draw a for a gas at tempe activation energy	erature T.		istribution of mole	ecular
			mber of lecules					
						E_a	Energy	(2 1)
		(ii)	State the	meaning of the te	erm <i>activa</i>			(2 marks)
								(2 marks)
		(iii)		In the graph the are emperature T .	ea that repi	resents the nu	umber of molecule	,
	(b)	(i)	State the	effect on the activ	vation ene	rgy of increas	sing the temperatu	,
			•••••		••••••			(1 mark)
		(ii)	Explain vincreases	•	olving gas	es become fa	ster as the tempera	nture
						•••••		
				,				(2 marks)
	(c)			gases is allowed to ain the effect of a				, ,
		Effec	et					
		Expl	anation					

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0	4.0 He Helium 2	20.2 Ne	Neon 10	39.9 Ar	Argon 18	83.8 K	Krypton 36	131.3 Xe	Xenon 54	222.0 Rn	Radon 86	
=		19.0 T	Fluorine 9	35.5 C	Chlorine 17	79.9 Br	Bromine 35	126.9 –	lodine 53	210.0 At	Astatine 85	
5		0.9I	Oxygen 3	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 34	
>		°. Z	Nitrogen Oxygen 9	0. D	hosphorus 5	4.9 As	Arsenic 3	21.8 Sb	Antimony 1	0.60 ia	Bismuth 8	
≥		2.0 C	Carbon 7	%. 13.	Silicon F	2.6 Ge	iermanium 2	18.7 Sn	n Ti	07.2 Pb	Lead 8	
≡		 B	Boron Carbon 7	7.0 A	luminium 3	9.7 Ga	Gallium G	14.8 n	Indium 9 5	24.4 Z	Thallium 8	
		<u> </u>	52	Ö	<u> </u>	ق ق	<u>ာ က</u>	T	mium 4	χ σ	- <u>8</u>	
						l	Zinc 30	112.4 C	Cadn 48	200.6 Hg	Merc 80	
						63.5 Cu	Copper 29	107.9 Ag		197.0 Au	Gold 79	
								106.4 Pd	Palladium 46	195.1 P	Platinum 78	
						58.9 Co	Cobalt 27	102.9 Rh	Rhodium 45	192.2 Ir	Iridium 77	
						55.8 Fe	lron 26	101.1 Bu	Ruthenium 14	90.2 Os	Osmium 76	
		6.9 Li	Lithium 3			54.9 Mn	Manganese	38.9 Tc	Fechnetium 13		Rhenium 75	
						52.0 (t	Chromium Manganese Iron Cobalt Nickel 24 25 26 27 28	95.9 Mo	Molybdenum 42	183.9 W	Tungsten 74	
		omic ma	mber —			\$ \	Vanadium 23	92.9 NB	Niobium 1	180.9 Ta	⊏	
	Key	relative atomic mass -	atomic number			47.9		91.2 Zr		178.5 Hf	Hafnium 72	
	_	_	.0			45.0 Sc		88.9 >		138.9 La	ىد∋	227 Ac Actinium 89 †
=		9.0 Be	Beryllium 4	24.3 Mg				87.6 Sr	Strontium 38	137.3 Ba	_	226.0 Ra Radium 88
_	1.0 H Hydrogen	6.9 Li	Lithium 3	23.0 Na		39.1 X	_	85.5 8		132.9 Cs		223.0 Fr Francium 87
		•		•		•				-		

**************************************	140.1 Ce	140.1 140.9 144.2 144. Ce Pr Nd F	144.2 Nd	₆ , E	150.4 Sm	52.0 Eu	157.3 Gd	158.9 Tb	162.5 Dy	64.9 Ho	167.3 Er	168.9 Tm	173.0 Yb	175.0 Lu
38 - 71 Laninanides	Cerium 58	Praseodymium Neodymium Prome 59 61	Neodymium 60	ethium	Samarium 62	Europium 33	Gadolinium 64		Dysprosium 66	Holmium 7	Erbium 68		Ytterbium 70	Lutetium 71
	232.0 Th	232.0 231.0 238.0 237.0 Th Pa U Np	238.0 U		239.1 Pu	.43.1 Am	247.1 Cm		ئ	252) Es	257) Fm	(258) Md	(259) No	(260) Lr
T 90 - 103 Actinides	Thorium 90	Thorium Protactinium Uranium 92 92	Uranium 92	E	Ε	mericium 5	Curium 96	Berkelium 97	Saliforniu 8	insteinium 9	Fermium I 00	Mendelevium 101	Nobelium 102	Lawrencium 103

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7-4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230-3550
O—H (acids)	2500-3000

2	(a)		extraction of iron involves the reduction of iron(III) oxide, Fe_2O_3 , in the ace by a reducing agent.	Blast
		(i)	In terms of electrons, state what is meant by reduction and reducing ag	ent.
			Reduction	
			Reducing agent	•••••
		(ii)	Identify a reducing agent that can reduce Fe_2O_3 to iron in the Blast Fur Write an equation for the reaction between Fe_2O_3 and the reducing age have stated.	
			Reducing agent	
			Equation	•••••
		(iii)	Give one essential condition needed for this reduction.	
				(5 marks)
	(b)	how	ten iron obtained from the Blast Furnace contains carbon as an impurity. this impurity is removed.	-
		•••••		(2 marks)
	(c)	(i)	Titanium is extracted from titanium(IV) oxide, TiO ₂ , in a two-stage pro Write equations for the reaction occurring in stage 1 and stage 2 of this extraction.	
			Equation for stage 1	
			Equation for stage 2	
		(ii)	Give one essential condition, other than temperature, for the second state why it is necessary.	ge, and
			Condition	
			Reason	
	(d)	Give	two reasons why titanium is expensive to extract.	(4 marks)
		Reas	on 1	
		Reas	son 2	
				(2 marks)

		ne the term stand					
	•••••						•••••
	•••••						(3 mai
(b)		e an equation, in I to the standard					y change
	•••••					••••••	(2 mai
(c)	State	e Hess's Law.					
							(1 mc
(d)		c acid can be ma following equation		water, nitroger	n dioxide and	oxygen acc	cording to
	tile i	onowing equatic	on.				
		O(l) + $2NO_2(g)$		→ 2HNO ₃ (l)	$\Delta H^{\Theta} = -12$	28 kJ mol ⁻¹	
	H ₂ C		$+\frac{1}{2}O_2(g)$ —				
	H ₂ O	$O(1) + 2NO_2(g)$	$+\frac{1}{2}O_2(g)$ —				
	H ₂ C Some	O(l) + 2NO ₂ (g) e standard enthal	$+\frac{1}{2}O_2(g)$ — lpies of format	ion, $\Delta H_{\rm f}^{\Theta}$, are	given in the ta		
	H ₂ C Some	O(l) + 2NO ₂ (g) e standard enthal	$+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ lpies of format $H_2O(1)$ -286	ion, $\Delta H_{\rm f}^{\ \ \ \ }$, are NO ₂ (g) +34	given in the tag $O_2(g)$ 0	able below.	
	H ₂ O Some	$O(1) + 2NO_2(g)$ e standard enthal Substance $H_f^{\oplus}/kJ \text{ mol}^{-1}$	$+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ lpies of format $H_2O(1)$ -286	ion, $\Delta H_{\rm f}^{\ \ \ \ }$, are NO ₂ (g) +34	given in the tag $O_2(g)$ 0	able below.	(1 ma
	H ₂ O Some	$O(1) + 2NO_2(g)$ e standard enthal Substance $H_f^{\oplus}/kJ \text{ mol}^{-1}$	$+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ lpies of format $+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ $- \frac{1}{2}O_2(g) - \frac{1}$	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the tag $O_2(g)$ 0 of $O_2(g)$ is z	ero.	•
	H_2G Some ΔH (i)	$O(1) + 2NO_2(g)$ e standard enthal Substance $H_f^{\oplus}/kJ \text{ mol}^{-1}$ State why the s	$+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ lpies of format $+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ $- \frac{1}{2}O_2(g) - \frac{1}$	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the tag $O_2(g)$ 0 of $O_2(g)$ is z	ero.	(1 ma
	H_2G Some ΔH (i)	$O(1) + 2NO_2(g)$ e standard enthal Substance $H_f^{\oplus}/kJ \text{ mol}^{-1}$ State why the s	$+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ lpies of format $+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ $- \frac{1}{2}O_2(g) - \frac{1}$	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the tag $O_2(g)$ 0 of $O_2(g)$ is z	ero.	•
	H_2G Some ΔH (i)	$O(1) + 2NO_2(g)$ e standard enthal Substance $H_f^{\oplus}/kJ \text{ mol}^{-1}$ State why the s	$+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ lpies of format $+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ $- \frac{1}{2}O_2(g) - \frac{1}$	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the tag $O_2(g)$ 0 of $O_2(g)$ is z	ero.	•
	H_2G Some ΔH (i)	$O(1) + 2NO_2(g)$ e standard enthal Substance $H_f^{\oplus}/kJ \text{ mol}^{-1}$ State why the s	$+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ lpies of format $+ \frac{1}{2}O_2(g) - \frac{1}{2}O_2(g)$ $- \frac{1}{2}O_2(g) - \frac{1}$	ion, $\Delta H_{\rm f}^{\Theta}$, are NO ₂ (g) +34	given in the tag $O_2(g)$ 0 of $O_2(g)$ is z	ero.	•

4	Whe	n nitrogen monoxide reacts with oxygen, a dynamic equilibrium is established.
		$2NO(g) + O_2(g) \implies 2NO_2(g) \qquad \Delta H^{\circ} = -115 \text{ kJ mol}^{-1}$
	(a)	State what is meant by dynamic equilibrium.
		(2 marks)
	(b)	State and explain how the total pressure in this equilibrium reaction should be changed to give a higher equilibrium yield of NO_2
		Change in pressure
		Explanation
		(3 marks)
	(c)	State and explain the effect of an increase in temperature on the yield of NO_2 in this equilibrium reaction.
		Effect
		Explanation
		(3 marks)
	(d)	Deduce the oxidation state of nitrogen in NO_3^- and in NO_2^+
		NO_3^-

 NO_2^+

10

(2 marks)

SECTION B

Answer **question 5** in the space provided on pages 8 to 12 of this booklet.

5	(a)	State the trend in the reducing ability of the halide ions from fluoride to iodide. (1 mark)
	(b)	Concentrated sulphuric acid reacts with solid potassium iodide to form a mixture of products. These products include sulphur dioxide and iodine.
		Write half-equations for the formation of iodine from iodide ions, and for the formation of sulphur dioxide from sulphuric acid. Hence write an overall equation for the formation of these products from iodide ions and sulphuric acid.
		Identify one other reduction product formed in the reaction between sulphuric acid and solid potassium iodide.
		(4 marks)
	(c)	State what you would observe when aqueous bromine reacts with a solution of potassium iodide. Write an equation for the reaction.
		State the role of bromine in the reaction. (3 marks)
	(d)	Give a reagent which could be used to distinguish between separate solutions of potassium bromide and potassium iodide. State what would be observed when this reagent is added to each of the separate solutions of potassium bromide and potassium iodide. Write an equation for one of the reactions. Identify a reagent which could be added to the mixtures from the first test to confirm the identity of the halide ions. State what would be observed in each case. (7 marks)
		END OF QUESTIONS
•••••	••••••	
• • • • • •	••••••	
• • • • • •	••••••	
•••••	••••••	
•••••	•••••	
•••••		
•••••		

•••••
•••••
•••••
 •••••
•••••
 •••••
 •••••

••••••
 •••••