| Surname | | | Other | Names | | | | |-------------------|-----|--|-------|--------|------------|--|--| | Centre Number | | | | Candid | ate Number | | | | Candidate Signatu | ure | | | | | | | Leave blank General Certificate of Education June 2006 Advanced Level Examination CHEMISTRY CHM5 Unit 5 Thermodynamics and Further Inorganic Chemistry (including Synoptic Assessment) Monday 26 June 2006 9.00 am to 11.00 am For this paper you must have • a calculator. Time allowed: 2 hours ## Instructions - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - Answer questions in **Section A** and **Section B** in the spaces provided. All working must be shown. - Do all rough work in this book. Cross through any work you do not want marked. - The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination. - Section B questions are provided on a perforated sheet. Detach this sheet at the start of the examination. # **Information** - The maximum mark for this paper is 120. - The marks for part questions are shown in brackets. - You are expected to use a calculator where appropriate. - Write your answers to the questions in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate. # **Advice** • You are advised to spend about 1 hour on **Section A** and about 1 hour on **Section B**. | F | or Exam | iner's Us | se | |-----------|--------------|---------------|------| | Number | Mark | Number | Mark | | 1 | | | | | 2 | | | | | 3 | | | | | 4 | | | | | 5 | | | | | 6 | | | | | 7 | | | | | 8 | | | | | 9 | Total (Co | olumn 1) | \rightarrow | | | Total (Co | olumn 2) – | \rightarrow | | | TOTAL | | | | | Examine | r's Initials | | | # **SECTION A** Answer all questions in the spaces provided. | 1 | exces | s of l | sample of impure iron, containing an unreactive impurity, was reacted with an hydrochloric acid. All of the iron in the sample reacted, evolving hydrogen gas as a solution of iron(II) chloride. The volume of hydrogen evolved was $102 \mathrm{cm}^3$, at $298 \mathrm{K}$ and $110 \mathrm{kPa}$. | |---|-------|--------|--| | | hydro | gen p | ntage, by mass, of iron in the sample can be determined using either the volume of produced or by titrating the solution of iron(II) chloride formed against a standard potassium dichromate(VI). | | | (a) | (i) | Write an equation for the reaction between iron and hydrochloric acid. | | | | (ii) | Calculate the number of moles of hydrogen produced in the reaction. | | | | | | | | | | | | | | (iii) | Use your answers to parts (a)(i) and (ii) to determine the number of moles of iron and the mass of iron in the original sample. (If you have been unable to complete part (a)(ii) you should assume the answer to be 4.25×10^{-3} mol. This is not the correct answer.) | | | | | Moles of iron | | | | (iv) | Mass of iron | | | | | | | | | | (7 marks) | # The Periodic Table of the Elements ■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question. | 0 | 4.0 He Helium 2 | S S | leon | ٩ | rgon | ۲۳ | Krypton
36 | പ് റ | enon | 222.0
Rn | adon | | |----------|----------------------------------|----------------------|------------------------|-------------------|------------------|-------------------|--------------------------|--------------------|--------------------------|--------------------|-------------------|---| | | 4 0.4
H | | | | | | | | | | | | | = | | 19.0
H | Fluorine
9 | 35.5
C | Chlorine
17 | 79.9
Br | Bromine
35 | 126.9
_ | lodine
53 | 210.0
At | Astatine
85 | | | 5 | | ွဝ | Oxygen | _ w | Sulphur | So. | elenium
F | 7.6
Te | ellurium | 210.0
Po | Polonium
84 | | | > | | 0.41
Z | Carbon Nitrogen (6 7 8 | 31.0
P | Phosphorus
15 | 74.9
As | Arsenic
33 | 121.8
Sb | Antimony
51 | 209.0
Bi | Bismuth
83 | | | ≥ | | 12.0
C | Carbon
6 | 28.1
Si | Silicon
14 | 72.6
Ge | Germanium
32 | 118.7
Sn | Tin
50 | 207.2
Pb | Lead
82 | | | ≡ | | 10.8
a | Boron 6 | 27.0
AI | Aluminium
13 | 69.7
Ga | Gallium
31 | 114.8
n | Indium
49 | 204.4
T | Thallium
81 | | | | | | | | | 65.4
Zn | Zinc
30 | 112.4
Cd | Cadmium
48 | 200.6
Hg | Mercury
80 | | | | | | | | | 63.5
Cu | | | Silver
47 | 197.0
Au | Gold
79 | | | | | | | | | 58.7
N | Nickel
28 | 106.4
Pd | Palladium
46 | 195.1
Pt | Platinum
78 | | | | | | | | | 28.9
S | e Iron Cobalt
26 27 | 102.9
Rh | Rhodium
45 | 192.2
 r | Iridium
77 | | | | | | | | | 55.8
Fe | Iron
26 | 101.1
Bu | Ruthenium
44 | 190.2
Os | Osmium
76 | | | | | 6.9
Li | Lithium
3 | | | 54.9
Mn | Chromium Manganese 24 25 | 98.9
Tc | Molybdenum Technetium 42 | 186.2
Re | _ | | | | | ass | | | | ن | | 95.9
Mo | Molybdenum
42 | 183.9
W | Tungsten
74 | | | | | relative atomic mass | umber – | | | 2 0.9 | Vanadium
23 | 92.9
Nb | Niobium
41 | 180.9
Ta | Tantalum
73 | | | | Key | relative a | atomic number | | | 47.9
Ti | Titanium
22 | 91.2
Zr | Zirconium
40 | 178.5
H | Hafnium
72 | | | | | | | ı | | 45.0
Sc | Scandium
21 | 8 8.9 | Yttrium
39 | 138.9
La | Lanthanum
57 * | 227
Ac
Actinium
89 † | | = | | 9.0
Be | Beryllium
4 | 24.3
Mg | 5 | 40.1
Ca | Calcium
20 | 87.6
Sr | Strontium
38 | 137.3
Ba | Barium
56 | 226.0
Ra
Radium
88 | | - | 1.0
H
Hydrogen
1 | 6.9
Li | Lithium
3 | 23.0
Na | Sodium
11 | 39.1
X | _ | 85.5
Rb | _ | 132.9
Cs | Caesium
55 | 223.0 Fr
Fr
Francium
87 | | * 58 – 71 Lanthanides | 140.1
Ce | Ce Pr Nd Ce Nd Ce Nd | 144.2
Nd | P.9 | 150.4
Sm | 150.4 152.0 1
Sm Eu | 157.3 158.9 Gd Tb | 158.9
Tb | 162.5
Dy | 162.5 164.9 1
Dy Ho | 67.3
Er | 168.9 173.0 Yb | 173.0
Yb | 175.0
Lu | |------------------------------|--------------------|--|--------------------|--------------------|--------------------|--------------------------------|--------------------------|----------------------|--------------------|------------------------|-------------------|-----------------------|--------------------|--------------------| | 3 | Cerium | Praseodymum Neodymum Prometnum Sa | Neodymium | Prometnium | samarıum | Europium | adolinium | lerbium | Dysprosium | Holmium | Erbium | Hunium | Ytterbium | Lutetium | | | 58 | 59 60 61 | 50 | 61 | 62 | 63 | 4 | 65 | 66 | 67 | 8 | 69 | 70 | 71 | | 00 t | 232.0
Th | 232.0 231.0 238.0 237.0 Th Pa U Np | 238.0
U | 237.0
Np | 239.1
Pu | 239.1 243.1 2.
Pu Am | 47.1
Cm | 247.1 2
BK | 252.1
Cf | (252)
Es | 257)
Fm | (258)
Md | (259)
No | (260)
Lr | | 90 - 103 Acillides | Thorium | Protactinium | Uranium | Neptunium | Plutonium | Americium | Curium | Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium | Lawrencium | | | 90 | 91 | 92 | 93 | 94 | 95 | 3 | 97 | 98 | 99 | 00 | 101 | 102 | 103 | Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ **Table 1** Proton n.m.r chemical shift data | Type of proton | δ/ppm | |----------------|---------| | RCH_3 | 0.7–1.2 | | R_2CH_2 | 1.2–1.4 | | R_3CH | 1.4–1.6 | | $RCOCH_3$ | 2.1–2.6 | | $ROCH_3$ | 3.1–3.9 | | $RCOOCH_3$ | 3.7–4.1 | | ROH | 0.5–5.0 | **Table 2** Infra-red absorption data | Bond | Wavenumber/cm ⁻¹ | |----------------|-----------------------------| | С—Н | 2850-3300 | | С—С | 750–1100 | | C=C | 1620–1680 | | C=O | 1680–1750 | | С—О | 1000-1300 | | O—H (alcohols) | 3230–3550 | | O—H (acids) | 2500-3000 | | (b) | (i) | Write half-equations for the oxidation of Fe^{2+} and for the reduction of $Cr_2O_7^{2-}$ in acidic solution, and use these to construct an overall equation for the reaction between these two ions. | |-----|-------|--| | | | Half-equation for the oxidation of Fe ²⁺ | | | | Half-equation for the reduction of $Cr_2O_7^{2-}$ | | | | Overall equation | | | (ii) | The number of moles of iron in the sample was determined in part (a)(iii). Use this answer to calculate the volume of a $0.0200\mathrm{moldm^{-3}}$ solution of potassium dichromate(VI) which would react exactly with the solution of iron(II) chloride formed in the reaction. (If you have been unable to complete part (a)(iii) you should assume the answer to be $3.63\times10^{-3}\mathrm{mol}$. This is not the correct answer.) | | | | | | | | | | | | | | | (iii) | Explain why an incorrect value for the number of moles of iron(II) chloride formed would have been obtained if the original solution had been titrated with potassium manganate(VII). | | | | | | | | (7 marks) | 14 The sketch graph below shows how the entropy of a sample of water varies with temperature. | (a) Su | ggest | why | the | entropy | of | water | is | zero | at | 0 k | ζ. | |--------|-------|-----|-----|---------|----|-------|----|------|----|-----|----| |--------|-------|-----|-----|---------|----|-------|----|------|----|-----|----| | (1 n | nark) | |------|-------| | | | | (b) | What change | of state | occurs at | temperature | T_1 ? | |-----|-------------|----------|-----------|-------------|---------| |-----|-------------|----------|-----------|-------------|---------| | (1 mark) | |----------| | (c) | Explain why the entropy change, ΔS , at temperature T_2 is much larger than that at | |-----|---| | | temperature T_1 . | | temperature 11. | | | |-----------------|------|-----------| | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | (2 marks) | | | | | (d) It requires $3.49\,\mathrm{kJ}$ of heat energy to convert $1.53\,\mathrm{g}$ of liquid water into steam at $373\,\mathrm{K}$ and $100\,\mathrm{kPa}$. | (1) | water forms 1.00 mol of steam at 373 K and 100 kPa. | |-----|---| | | | | | | | | | 10 | (11) | enthalpy change, ΔH , and entropy change, ΔS . | |-------|---| | | | | (iii) | For the conversion of liquid water into steam at 373 K and 100 kPa, $\Delta G = 0 \text{ kJ mol}^{-1}$ | | | Calculate the value of ΔS for the conversion of one mole of water into steam under these conditions. State the units. (If you have been unable to complete part (d)(i) you should assume that $\Delta H = 45.0 \mathrm{kJ}\mathrm{mol}^{-1}$. This is not the correct answer.) | | | Calculation | | | | | | | | | Units | | | (6 marks) | Turn over for the next question 3 The following scheme shows some reactions of chromium compounds in aqueous solution. (a) Identify the grey-green precipitate **A** and the gas **B** formed in Reaction 1. Write an equation for this reaction. | Precipitate A | | |---------------|-----------| | Gas B | | | Equation | | | | | | | (3 marks) | (b) (i) Identify a reagent for Reaction $\boldsymbol{2}$. - (ii) Deduce the oxidation state of chromium in CrO_4^{2-} - (iii) Identify a reagent needed for Reaction 3. Write a half-equation for the conversion of $[Cr(OH)_6]^{3-}$ into CrO_4^{2-} Half-equation Reagent (4 marks) | (c) | (i) | Draw the structure of the chromium-containing species C formed in Reaction 5 . Indicate the charge on species C . | |-----|--------------|--| | | | | | | | | | | | | | | (ii) | Explain, by reference to the changes in bonding, why the enthalpy change, ΔH , in Reaction 5 is close to zero. | | | | | | | (iii) | Explain why the free-energy change, ΔG , for Reaction 5 is negative. | | | | | | | | | | | | (7 marks) | | (d) | | tify the chromium-containing species present in the blue solution D formed in the state the role of zinc in its formation. | | | Chro | omium-containing species | | | Role | of zinc(2 marks) | | (e) | boili
com | organic compounds are formed in Reaction 7. One of these compounds has a low ng point and can be distilled readily from the reaction mixture. The other pound has a higher boiling point and is the main organic product formed when the tion mixture is refluxed. | | | (i) | Identify the organic product which has a low boiling point. | | | | | | | (ii) | Identify the main organic product formed when the mixture is refluxed. | | | | (2 marks) | 4 A sealed flask containing gases **X** and **Y** in the mole ratio 1:3 was maintained at 600 K until the following equilibrium was established. $$X(g) + 3Y(g) \rightleftharpoons 2Z(g)$$ The partial pressure of ${\bf Z}$ in the equilibrium mixture was 6.0 MPa when the total pressure was 22.0 MPa. | (a) | (i) | Write an expression for the equilibrium constant, K_p , for this reaction. | |-----|-------|---| | | | | | | | | | | (ii) | Calculate the partial pressure of \mathbf{X} and the partial pressure of \mathbf{Y} in the equilibrium mixture. | | | | Partial pressure of X | | | | | | | | Partial pressure of Y | | | (iii) | Calculate the value of K_p for this reaction under these conditions and state its units. | | | | Value of K _p | | | | | | | | | | | | Units of K_p (6 marks) | | (b) | | n this reaction is carried out at 300 K and a high pressure of 100 MPa, rather than 0 K and 22.0 MPa, a higher equilibrium yield of gas Z is obtained. | | | Give | two reasons why an industrialist is unlikely to choose these reaction conditions. | | | Reas | on 1 | | | Reas | on 2 | | | | (2 marks) | 5 Use the data in the table below, where appropriate, to answer the questions which follow. | Standard electrode potentials | E^{Θ}/V | |--|----------------| | $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$ | +0.77 | | $Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$ | +1.36 | | $2BrO_3^-(aq) + 12H^+(aq) + 10e^- \longrightarrow Br_2(aq) + 6H_2O(1)$ | +1.52 | | $O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O(1)$ | +2.08 | | $F_2O(g) + 2H^+(aq) + 4e^- \longrightarrow 2F^-(aq) + H_2O(1)$ | +2.15 | Each of the above can be reversed under suitable conditions. | (a) | (i) | Identify the | most powerful | reducing agent | in the table. | |-----|-----|--------------|---------------|----------------|---------------| |-----|-----|--------------|---------------|----------------|---------------| Identify the most powerful oxidising agent in the table. (iii) Identify **all** the species in the table which can be oxidised in acidic solution by ${\rm BrO}_3^{\text{-}}(aq)$. (4 marks) (b) The cell represented below was set up. $$Pt \, | \, Fe^{2+}(aq), Fe^{3+}(aq) \, || \, BrO_3^-(aq), Br_2(aq) \, | \, Pt$$ (i) Deduce the e.m.f. of this cell. (ii) Write a half-equation for the reaction occurring at the negative electrode when current is taken from this cell. (iii) Deduce what change in the concentration of Fe³⁺(aq) would cause an increase in the e.m.f. of the cell. Explain your answer. Change in concentration Explanation 10 There are no questions printed on this page ## **SECTION B** Detach this perforated sheet. Answer **all** questions in the space provided on pages 15 to 24 of this booklet. - **6** (a) (i) Write an equation for the reaction of ammonia with water. Explain how, in this reaction, ammonia behaves as a Brønsted-Lowry base. Draw the shape of the species formed from ammonia. - (ii) Write an equation for the reaction of ammonia with boron trifluoride. Explain how, in this reaction, ammonia behaves as a Lewis base. Draw the shape of the species formed. (6 marks) (b) Outline the mechanism for the addition-elimination reaction between ammonia and an acyl chloride. Name the organic product formed in the reaction you have given. (5 marks) (c) Amines can be made by the reaction between a haloalkane and ammonia. Explain why, in an excess of ammonia, a primary amine is the major organic product. (2 marks) (d) When ammonia reacts with potassium metal, a redox reaction occurs. Hydrogen and NH₂ ions are produced. Write a half-equation for the formation of hydrogen and NH_2^- ions from ammonia. Use this to deduce an overall equation for the reaction between potassium and ammonia. (2 marks) (e) Boiling point data for three hydrides are given in the table below. | Hydride | $M_{ m r}$ | Boiling point/K | |---------|------------|-----------------| | Methane | 16 | 91.1 | | Ammonia | 17 | 240 | | Water | 18 | 373 | Explain why these three hydrides have very different boiling points. (4 marks) - 7 (a) Explain why the melting point of magnesium chloride is much higher than the melting point of silicon tetrachloride. (5 marks) - (b) Suggest why the melting point of magnesium oxide is much higher than the melting point of magnesium chloride. (2 marks) - (c) Magnesium oxide and sulphur dioxide are added separately to water. In each case describe what happens. Write equations for any reactions which occur and state the approximate pH of any solution formed. (6 marks) - (d) Write equations for two reactions which together show the amphoteric character of aluminium hydroxide. (4 marks) - 8 (a) State the trend in the reducing power of the halide ions Cl⁻ to I⁻. Identify all the reduction products formed when solid sodium iodide reacts with concentrated sulphuric acid. Write an overall equation for **one** of these redox reactions. (6 marks) - (b) Outline a mechanism for the formation of a chloroalkane by the reaction between an alkane and chlorine. (3 marks) - (c) Name and outline a mechanism for the reaction of a chloroalkane with benzene in the presence of anhydrous aluminium chloride. (5 marks) - 9 (a) Explain why the reaction between sodium ethanedioate, Na₂C₂O₄, and potassium manganate(VII) in acidified aqueous solution is initially slow but gradually increases in rate. Write equations to illustrate your answer. (6 marks) - (b) State what is meant by the term *active site* as applied to a heterogeneous catalyst. Explain how the number of active sites can be increased for a given mass of catalyst. The efficiency of a heterogeneous catalyst often decreases during use. Explain, using a specific example, why this happens. (4 marks) # **END OF QUESTIONS** |
 | |------| | | | | |
 | | | | | | | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | | | | | |
 | |
 | |
 | | | |
 | | | | ••••• | |-----------| |
 | |
 | | | | | | | |
 | |
••••• | |
 | | | | | | ••••• | | ••••• | | ••••• | | ••••• | | | | ••••• | | ••••• | | | | ••••• | | | |
 | |
 | |------| | | | | | | |
 | | | | | | | | | | | |
 | | | |
 | |-----------| | | | | | | | | |
 | |
 | | | | ••••• | | ••••• | | | |
••••• | |
••••• | |
••••• | | ••••• | | | | ••••• | | •••••• | | | | | | | |
 | |
 | |
 | |
 | |------| | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | |
 | | | |
 | | | | | | | | | | | |
 | |------| |
 |
 | |
 | |
 | | | | | | | |
 | |
 | |
 | |
 | | ••••• | |-----------| | | | | | | | | | | | ••••• | | | | | | ••••• | | ••••• | |
••••• | |
••••• | |
••••• | |
••••• | | ••••• | | ••••• | | ••••• | | | | ••••• | | ••••• | | ••••• | |
••••• | |
 | |
 | | | |
 | |------------| | | | •••••• | | •••••• | |
••••• | |

•••••• | |
•••••• | |
•••••• | | ••••• | | ••••• | |
•••••• | | ••••• | | ••••• | | | | | | •••••• | | | | | | | | | ••••• | |--|---------| ••••••• | | | ••••• | | | ••••• | | | | | | | | | | | | ••••• | •••••• | | | •••••• | | | | | | | | | | | Conscients @ 2000, A.O.A. and its linear and All minister account. | |