
| Surname   |        |     |  | Other | Names   |            |  |  |
|-----------|--------|-----|--|-------|---------|------------|--|--|
| Centre Nu | mber   |     |  |       | Candida | ate Number |  |  |
| Candidate | Signat | ure |  |       |         |            |  |  |



General Certificate of Education June 2006 Advanced Subsidiary Examination



# CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry

Wednesday 7 June 2006 9.00 am to 10.00 am

## For this paper you must have

• a calculator.

Time allowed: 1 hour

### Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer **Section A** and **Section B** in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

# **Information**

- The maximum mark for this paper is 60.
- The marks for part questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the question in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

# Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

| F         | or Exam      | iner's Us     | e    |
|-----------|--------------|---------------|------|
| Number    | Mark         | Number        | Mark |
| 1         |              |               |      |
| 2         |              |               |      |
| 3         |              |               |      |
| 4         |              |               |      |
| 5         |              |               |      |
|           |              |               |      |
|           |              |               |      |
|           |              |               |      |
| Total (Co | olumn 1)     | <b>→</b>      |      |
| Total (Co | olumn 2) _   | $\rightarrow$ |      |
| TOTAL     |              |               |      |
| Examine   | r's Initials |               |      |

# **SECTION A**

Answer all questions in the spaces provided.

| 1 (a)     | Define the term standard enthalpy of fo                                                                                                                                        | ormation, $\Delta H_{\mathrm{f}}^{\Theta}$          |                    |                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|-----------------------------------|
|           |                                                                                                                                                                                |                                                     |                    |                                   |
|           |                                                                                                                                                                                | ••••••                                              | ••••••             | •••••                             |
|           |                                                                                                                                                                                | •••••                                               | •••••              | (3 marks)                         |
| (b)       | Use the data in the table to calculate the methylbenzene, $C_7H_8$                                                                                                             | e standard entha                                    | alpy of formation  | n of liquid                       |
| Substance | •                                                                                                                                                                              | C(s)                                                | H <sub>2</sub> (g) | C <sub>7</sub> H <sub>8</sub> (1) |
| Standard  | enthalpy of combustion, $\Delta H_{\rm c}^{\ominus}/{\rm kJmol}^{-1}$                                                                                                          | -394                                                | -286               | -3909                             |
|           | $7C(s) + 4H_2(g)$                                                                                                                                                              | $\longrightarrow$ C <sub>7</sub> H <sub>8</sub> (1) |                    |                                   |
|           |                                                                                                                                                                                |                                                     |                    |                                   |
|           |                                                                                                                                                                                |                                                     |                    | (3 marks)                         |
| (c)       | An experiment was carried out to deter liquid methylbenzene using the apparat                                                                                                  |                                                     |                    | f combustion of                   |
|           |                                                                                                                                                                                | container  water (250)  methylbenz                  |                    |                                   |
|           | Burning 2.5 g of methylbenzene caused 60 °C. Use this information to calculat methylbenzene, C <sub>7</sub> H <sub>8</sub> (The specific heat capacity of water is container.) | e a value for the                                   | e enthalpy of con  | mbustion of                       |
|           |                                                                                                                                                                                |                                                     |                    |                                   |
|           |                                                                                                                                                                                |                                                     |                    |                                   |
|           |                                                                                                                                                                                |                                                     |                    |                                   |

# The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

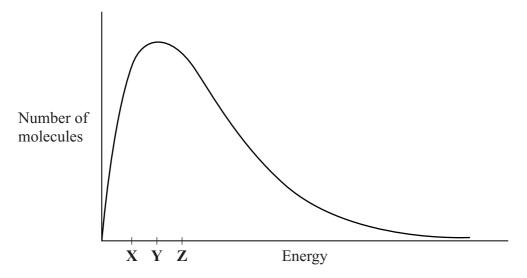
| 0        | 4.0 <b>He</b> Helium 2   | S S                  | leon                   | ٩                 | rgon             | ۲۳                | Krypton<br>36            | പ് <b>റ</b>        | enon                     | 222.0<br><b>Rn</b> | adon              |                                      |
|----------|--------------------------|----------------------|------------------------|-------------------|------------------|-------------------|--------------------------|--------------------|--------------------------|--------------------|-------------------|--------------------------------------|
|          | 4 0.7<br>H H             |                      |                        |                   |                  |                   |                          |                    |                          |                    |                   |                                      |
| <b>=</b> |                          | 19.0<br><b>H</b>     | Fluorine<br>9          | 35.5<br>C         | Chlorine<br>17   | 79.9<br><b>Br</b> | Bromine<br>35            | 126.9<br>_         | lodine<br>53             | 210.0<br><b>At</b> | Astatine<br>85    |                                      |
| 5        |                          | ွဝ                   | Oxygen                 | _ w               | Sulphur          | So.               | elenium<br>F             | 7.6<br><b>Te</b>   | ellurium                 | 210.0<br><b>Po</b> | Polonium<br>84    |                                      |
| >        |                          | 0.41<br><b>Z</b>     | Carbon Nitrogen (6 7 8 | 31.0<br><b>P</b>  | Phosphorus<br>15 | 74.9<br><b>As</b> | Arsenic<br>33            | 121.8<br><b>Sb</b> | Antimony<br>51           | 209.0<br><b>Bi</b> | Bismuth<br>83     |                                      |
| <b>≥</b> |                          | 12.0<br><b>C</b>     | Carbon<br>6            | 28.1<br><b>S</b>  | Silicon<br>14    | 72.6<br><b>Ge</b> | Germanium<br>32          | 118.7<br><b>Sn</b> | Tin<br>50                | 207.2<br><b>Pb</b> | Lead<br>82        |                                      |
| ≡        |                          | 10.8<br><b>a</b>     | Boron 6                | 27.0<br><b>AI</b> | Aluminium<br>13  | 69.7<br><b>Ga</b> | Gallium<br>31            | 114.8<br><b>n</b>  | Indium<br>49             | 204.4<br><b>T</b>  | Thallium<br>81    |                                      |
|          |                          |                      |                        |                   |                  | 65.4<br><b>Zn</b> | Zinc<br>30               | 112.4<br><b>Cd</b> | Cadmium<br>48            | 200.6<br><b>Hg</b> | Mercury<br>80     |                                      |
|          |                          |                      |                        |                   |                  | 63.5<br><b>Cu</b> |                          |                    | Silver<br>47             | 197.0<br><b>Au</b> | Gold<br>79        |                                      |
|          |                          |                      |                        |                   |                  | 58.7<br><b>Ni</b> | Nickel<br>28             | 106.4<br><b>Pd</b> | Palladium<br>46          | 195.1<br><b>Pt</b> | Platinum<br>78    |                                      |
|          |                          |                      |                        |                   |                  | 58.9<br><b>C</b>  | e Iron Cobalt<br>26 27   | 102.9<br><b>Rh</b> | Rhodium<br>45            | 192.2<br><b> r</b> | Iridium<br>77     |                                      |
|          |                          |                      |                        |                   |                  | 55.8<br><b>Fe</b> | Iron<br>26               | 101.1<br><b>Ru</b> | Ruthenium<br>44          | 190.2<br><b>Os</b> | Osmium<br>76      |                                      |
|          |                          | 6.9<br><b>Li</b>     | Lithium<br>3           |                   |                  | 54.9<br><b>Mn</b> | Chromium Manganese 24 25 | 98.9<br><b>Tc</b>  | Molybdenum Technetium 42 | 186.2<br><b>Re</b> | _                 |                                      |
|          |                          | SSt                  |                        |                   |                  | <b>ن</b><br>و     |                          | 95.9<br><b>Mo</b>  | Molybdenum<br>42         | 183.9<br><b>W</b>  | Tungsten<br>74    |                                      |
|          |                          | relative atomic mass | umber —                |                   |                  | 50.9<br><b>V</b>  | Vanadium<br>23           | 92.9<br><b>Nb</b>  | Niobium<br>41            | 180.9<br><b>Ta</b> | Tantalum<br>73    |                                      |
|          | Key                      | relative a           | atomic number          |                   |                  | 47.9<br><b>Ti</b> | Titanium<br>22           | 91.2<br><b>Zr</b>  | Zirconium<br>40          | 178.5<br><b>H</b>  | Hafnium<br>72     |                                      |
|          |                          |                      |                        |                   |                  | 45.0<br><b>Sc</b> | Scandium<br>21           | 88.9<br><b>Y</b>   | Yttrium<br>39            | 138.9<br><b>La</b> | Lanthanum<br>57 * | 227<br><b>Ac</b><br>Actinium<br>89 † |
| =        |                          | 9.0<br><b>Be</b>     | Beryllium<br>4         | 24.3<br><b>Mg</b> | 5                | 40.1<br><b>Ca</b> | Calcium<br>20            | 87.6<br><b>Sr</b>  | Strontium<br>38          | 137.3<br><b>Ba</b> | Barium<br>56      | 226.0<br><b>Ra</b><br>Radium<br>88   |
| -        | 1.0 <b>H</b><br>Hydrogen | 6.9<br><b>Li</b>     | Lithium<br>3           | 23.0<br><b>Na</b> | Sodium<br>11     | 39.1<br><b>K</b>  | _                        | 85.5<br><b>Rb</b>  | _                        | 132.9<br><b>Cs</b> | Caesium<br>55     | 223.0<br><b>Fr</b><br>Francium<br>87 |

| . <b>58 – 71</b> Lanthanides | 140.1<br><b>Ce</b> | Ce Pr Nd Ce Pr Nd Ce Pr Nd Ce | 144.2<br><b>Nd</b> | <b>P</b> 39        | 150.4<br><b>Sm</b> | 150.4 152.0 157.3 158.9 1<br><b>Sm Eu Gd Tb</b> | 157.3<br><b>Gd</b> | 158.9<br><b>Tb</b>   | 162.5<br><b>Dy</b> | 162.5 164.9 16<br>Dy Ho | 57.3<br><b>Er</b> | 168.9 173.0 <b>Yb</b> | 173.0<br><b>Yb</b> | 175.0<br><b>Lu</b> |
|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|-------------------------------------------------|--------------------|----------------------|--------------------|-------------------------|-------------------|-----------------------|--------------------|--------------------|
|                              | Cerium<br>58       | Praseodymium   Pror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Neodymium<br>60    | Prometnium<br>61   | Samarium<br>62     | Europium<br>63                                  | gadolinium<br>54   | lerblum<br>65        | Dysprosium<br>66   | Holmium<br>67           | Erbium<br>3       | I nullum<br>69        | rtterblum<br>70    | Lutetium<br>71     |
| A 00 A 00 In incinct         | 232.0<br><b>Th</b> | 232.0 231.0 238.0 237.0 <b>Th Pa U Np</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 238.0<br><b>U</b>  | 237.0<br><b>Np</b> | 239.1<br><b>Pu</b> | 239.1 243.1 2.<br><b>Pu Am</b>                  | 247.1<br><b>Cm</b> | 247.1 2<br><b>BK</b> | 252.1<br><b>Cf</b> | (252)<br><b>Es</b>      | .57)<br><b>FB</b> | (258)<br><b>Md</b>    | (259)<br><b>No</b> | (260)<br><b>Lr</b> |
| sapul                        | Thorium<br>90      | Protactinium Uranium<br>91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Uranium<br>92      | Neptunium<br>93    | Plutonium<br>94    | Americium<br>95                                 | Curium<br>96       | Berkelium<br>97      | Californium<br>98  | Einsteinium<br>99       | Fermium<br>30     | Mendelevium<br>101    | m Nobelium<br>102  | Lawrencium<br>103  |

Gas constant  $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ 

**Table 1** Proton n.m.r chemical shift data

| Type of proton | δ/ppm   |
|----------------|---------|
| $RCH_3$        | 0.7–1.2 |
| $R_2CH_2$      | 1.2–1.4 |
| $R_3$ CH       | 1.4–1.6 |
| $RCOCH_3$      | 2.1–2.6 |
| $ROCH_3$       | 3.1–3.9 |
| $RCOOCH_3$     | 3.7–4.1 |
| ROH            | 0.5-5.0 |


**Table 2** Infra-red absorption data

| Bond           | Wavenumber/cm <sup>-1</sup> |
|----------------|-----------------------------|
| С—Н            | 2850-3300                   |
| С—С            | 750–1100                    |
| C = C          | 1620–1680                   |
| C=O            | 1680–1750                   |
| С—О            | 1000-1300                   |
| O—H (alcohols) | 3230–3550                   |
| O—H (acids)    | 2500-3000                   |

| (d) | A 25.0 cm <sup>3</sup> sample of 2.00 mol dm <sup>-3</sup> hydrochloric acid was mixed with 50.0 cm <sup>3</sup> of a 1.00 mol dm <sup>-3</sup> solution of sodium hydroxide. Both solutions were initially at 18.0 °C. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | After mixing, the temperature of the final solution was 26.5 °C.                                                                                                                                                        |
|     | Use this information to calculate a value for the standard enthalpy change for the following reaction.                                                                                                                  |
|     | $HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$                                                                                                                                                                 |
|     | In your calculation, assume that the density of the final solution is $1.00\mathrm{gcm^{-3}}$ and that its specific heat capacity is the same as that of water. (Ignore the heat capacity of the container.)            |
|     |                                                                                                                                                                                                                         |
|     |                                                                                                                                                                                                                         |
|     |                                                                                                                                                                                                                         |
|     | (4 marks)                                                                                                                                                                                                               |
| (e) | Give <b>one</b> reason why your answer to part (d) has a much smaller experimental error than your answer to part (c).                                                                                                  |
|     |                                                                                                                                                                                                                         |
|     | (1 mark)                                                                                                                                                                                                                |
|     | (1 many                                                                                                                                                                                                                 |

Turn over for the next question

The diagram below shows the Maxwell-Boltzmann distribution of molecular energies in a sample of a gas.



| (a) | (i) | State which one of <b>X</b> , | Y | or <b>Z</b> best | represents | the | mean | energy | of the | molecule | s. |
|-----|-----|-------------------------------|---|------------------|------------|-----|------|--------|--------|----------|----|
|     |     |                               |   |                  |            |     |      |        |        |          |    |

| (ii) | Explain the process that causes some molecules in this sample to have very low energies. |        |
|------|------------------------------------------------------------------------------------------|--------|
|      |                                                                                          |        |
|      | (3 mark.                                                                                 | <br>s) |

- On the diagram above, sketch a curve to show the distribution of molecular energies in the same sample of gas at a higher temperature. (2 marks)
- Explain why, even in a fast reaction, a very small percentage of collisions leads (c) to a reaction.
  - Other than by changing the temperature, state how the proportion of successful collisions between molecules can be increased. Explain why this method causes an increase in the proportion of successful collisions.

| Method for increasing the proportion of successful collisions |           |
|---------------------------------------------------------------|-----------|
|                                                               |           |
| Explanation                                                   |           |
|                                                               |           |
|                                                               | (4 marks) |

3 In the Haber Process for the manufacture of ammonia, nitrogen and hydrogen react as shown in the equation.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g) \qquad \Delta H^{\Theta} = -92 \text{ kJ mol}^{-1}$$

The table shows the percentage yield of ammonia, under different conditions of pressure and temperature, when the reaction has reached dynamic equilibrium.

| Temperature / K              | 600 | 800 | 1000 |
|------------------------------|-----|-----|------|
| % yield of ammonia at 10 MPa | 50  | 10  | 2    |
| % yield of ammonia at 20 MPa | 60  | 16  | 4    |
| % yield of ammonia at 50 MPa | 75  | 25  | 7    |

| (a) | Expl  | ain the meaning of the term dynamic equilibrium.                                                                                           |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
|     | ••••• |                                                                                                                                            |
|     | ••••• | (2 marks)                                                                                                                                  |
| (b) |       | Le Chatelier's principle to explain why, at a given temperature, the percentage of ammonia increases with an increase in overall pressure. |
|     | ••••• |                                                                                                                                            |
|     | ••••• |                                                                                                                                            |
|     | ••••• | (3 marks)                                                                                                                                  |
| (c) | Give  | a reason why a high pressure of 50 MPa is not normally used in the Haber Process.                                                          |
|     | ••••• | (1 mark)                                                                                                                                   |
| (d) | Man   | y industrial ammonia plants operate at a compromise temperature of about 800 K.                                                            |
|     | (i)   | State and explain, by using Le Chatelier's principle, one advantage, other than cost, of using a temperature lower than 800 K.             |
|     |       | Advantage                                                                                                                                  |
|     |       | Explanation                                                                                                                                |
|     |       |                                                                                                                                            |
|     | (ii)  | State the major advantage of using a temperature higher than 800 K.                                                                        |
|     |       |                                                                                                                                            |
|     | (iii) | Hence explain why 800 K is referred to as a compromise temperature.                                                                        |
|     |       |                                                                                                                                            |

(5 marks)

|     | is extracted from iron(III) oxide in a continuous process, whereas titanium is extracted titanium(IV) oxide in a batch process. |         |
|-----|---------------------------------------------------------------------------------------------------------------------------------|---------|
| (a) | Suggest why a high-temperature batch process is less energy-efficient than a high-temperature continuous process.               |         |
|     |                                                                                                                                 | ••••    |
|     | (2 mark                                                                                                                         | ts)     |
| (b) | Write an overall equation for the reduction of iron(III) oxide in the Blast Furnace.                                            |         |
|     | (2 mark                                                                                                                         | ts)     |
| (c) | Write two equations to show how titanium is extracted from titanium(IV) oxide in a two-stage process.                           |         |
|     | Equation for stage 1                                                                                                            | ••••    |
|     | Equation for stage 2                                                                                                            | ts)     |
| (d) | Give the major reason, other than its production in a batch process, why titanium is a more expensive metal than aluminium.     |         |
|     |                                                                                                                                 | ••••    |
|     | (1 mar                                                                                                                          | <br>∙k) |
| (e) | Give the major reason why aluminium is more expensive to extract than iron.                                                     |         |
|     |                                                                                                                                 | ••••    |
|     | (1 mar                                                                                                                          | ·k)     |

4

### SECTION B

Answer the question in the space provided on pages 9 to 12 of this booklet.

- 5 (a) Explain, by referring to electrons, the meaning of the terms *reduction* and *reducing* agent. (2 marks)
  - (b) Iodide ions can reduce sulphuric acid to three different products.
    - (i) Name the **three** reduction products and give the oxidation state of sulphur in each of these products.
    - (ii) Describe how observations of the reaction between solid potassium iodide and concentrated sulphuric acid can be used to indicate the presence of any **two** of these reduction products.
    - (iii) Write half-equations to show how two of these products are formed by reduction of sulphuric acid. (10 marks)
  - (c) Write an equation for the reaction that occurs when chlorine is added to cold water.

    State whether or not the water is oxidised and explain your answer. (3 marks)

| END OF QUESTIO | NS |
|----------------|----|
|----------------|----|

| <br>       |
|------------|
|            |
|            |
|            |
| •••••      |
|            |
|            |
| <br>       |
|            |
| ••••••     |
|            |
| •••••      |
| <br>       |
|            |
| <br>       |
|            |
| <br>•••••  |
|            |
| ••••••     |
| <br>       |
|            |
|            |
|            |
| <br>•••••• |
|            |
|            |
|            |
|            |
|            |
|            |
| •••••      |
|            |
|            |
| <br>       |
|            |
| <br>•••••  |
|            |
| •••••      |
| <br>       |
|            |
| <br>       |
|            |
| <br>•••••  |
|            |
|            |

| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |

| <br>        |
|-------------|
|             |
|             |
| <br>        |
| <br>        |
| <br>        |
|             |
| ••••••••••• |
|             |
|             |
|             |
|             |
| ••••••      |
|             |
|             |
|             |
|             |
| <br>        |
| <br>        |
| <br>        |
|             |
| <br>        |