| Surname | | Other | Names | | | | |---------------------|---|-------|---------|------------|--|--| | Centre Number | | | Candida | ate Number | | | | Candidate Signature | · | | | | | | Leave blank General Certificate of Education January 2006 Advanced Subsidiary Examination # CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity Wednesday 11 January 2006 9.00 am to 10.00 am ### For this paper you must have a calculator Time allowed: 1 hour ### **Instructions** - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions. - Answer the questions in Section A and Section B in the spaces provided. - All working must be shown. - Do all rough work in this book. Cross through any work you do not want marked. - The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination. ### **Information** - The maximum mark for this paper is 60. - The marks for questions are shown in brackets. - You are expected to use a calculator where appropriate. - The following data may be required. Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ - Your answers to the question in **Section B** should be written in continuous prose, where appropriate. - You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate. ### **Advice** • You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**. | _ | - | | | | | | | |-----------|--------------------|---------------|------|--|--|--|--| | - | For Examiner's Use | | | | | | | | Number | Mark | Number | Mark | | | | | | 1 | | | | | | | | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | 5 | | | | | | | | | 6 | Total (Co | lumn 1) | \rightarrow | | | | | | | Total (Co | lumn 2) _ | \rightarrow | | | | | | | TOTAL | | | | | | | | | Examine | r's Initials | | | | | | | ## **SECTION A** Answer all questions in the spaces provided. | 1 | (a) | Complete th | he following tab | ole. | | | |---|-----|--------------------------|----------------------------------|---|--|--| | | | | | Relative mass | Relative charge | | | | | | Neutron | | | | | | | | Electron | | | | | | | | | | | (2 marks) | | | (b) | | • | protons as, and foing the mass number | | nan, an atom of ⁹ Be. | | | | | | | | (2 marks) | | | (c) | | | | te shape of a molec
a. Name the shape | ule of Cl ₂ O. Show of each molecule. | | | | | $BeCl_2$ | | (| Cl_2O | | | | | | | | | | | | Name of sh | ape | | Name of shape | (4 marks) | | | (d) | The equation shown below | | on between magnes | sium hydroxide and | hydrochloric acid is | | | | N | $\operatorname{Ig}(OH)_2(s) + 2$ | eHCl(aq) → Mg | $gCl_2(aq) + 2H_2O(1$ |) | | | | | | n ³ , of 1.00 mol dm ⁻
nagnesium hydroxi | ³ hydrochloric acid
de. | required to react | (4 marks) # The Periodic Table of the Elements ■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question. | 0 (4.0 P | Helium 2 2 20.2 | Neon 10 | 39.9
Ar
Argon
18 | 83.8
K | Krypton
36 | 131.3
Xe | Xenon
54 | 222.0
Rn | Radon
86 | | | |-----------------|--------------------------------------|-----------------------------|---------------------------------------|------------------------|---|----------------------------------|------------------|--------------------|------------------|--------------------------------|------| | 5 | | | 35.5 (Cl Chlorine Chlorine 17 | | | 126.9
1 | lodine
53 | 210.0
At | Astatine
35 | | | | > | 16.0 | Oxygen | 2.1
S
Sulphur
6 | 8
0.0
0.0 | Selenium
4 | 127.6
Te | Tellurium
52 | 210.0
Po | Polonium
84 | | | | > | 14.0 | N
Nitrogen
7 | 31.0 P Phosphorus | 74.9
As | Arsenic
33 | 121.8
Sb | Antimony
51 | 209.0
Bi | Bismuth
83 | | | | ≥ | 12.0 | Carbon | 28.1
Si
Silicon
14 | 72.6
Ge | Germanium
32 | 118.7
Sn | Tin
50 | 207.2
Pb | | | | | ≡ | | Boron
5 | 27.0
AI
Aluminium
13 | 69.7
Ga | Gallium
31 | 114.8
In | Indium
49 | 204.4
TI | Thallium
81 | | | | | | | | 65.4
Zn | | 112.4
Cd | | 200.6
Hg | Mercury
80 | | | | | | | | 63.5
Cu | Copper
29 | 107.9
Ag | | 197.0
Au | Gold
79 | | | | | | | | 5 8.7 | Nickei
28 | 106.4
Pd | Palladium
46 | 195.1
Pt | | | | | | | | | 28.9
CO | Cobait
27 | 102.9
Rh | Rhodium
45 | 192.2
Ir | Iridium
77 | | | | | | | | 55.8
Fe | Iron
26 | 101.1
Ru | Ruthenium
44 | 190.2
Os | Osmium
76 | | | | | 6.9 | Li
Lithium
-3 | | 54.9
Mn | vanadium Chromium Manganese
23 24 25 | 98.9 101.1 102.9 Tc Ru Rh | Technetium
43 | 186.2
Re | Rhenium
75 | | | | | ass — | | | 25.0 | Chromium
24 | 95.9
M (| Molybde
42 | 183.9
W | Tungs
74 | | | | | Key
relative atomic mass - | number – | | | | 95.9
90 | Niobium
41 | 180.9
Ta | Tantalum
73 | | | | | Key
relative | atomic number | | | ı itanıum
22 | 91.2
Zr | Zirconium
40 | 178.5
Hf | Hafnium
72 | | | | | _ | | Г . | 45.0
Sc | Scandium
21 | 8 8.9 | Yttrium
39 | 138.9
La | Lanthanum 57 * 7 | 227
Ac tinium | 1 68 | | = | 0.0 | Be
Beryllium
4 | 24.3 Mg
Magnesium
12 | 40.1
Ca | Calcium
20 | 87.6
Sr | Strontium
38 | 137.3
Ba | | 226.0
Ra | 88 | | - I | Hydrogen 1 | Lithium | 23.0 Na Sodium | 39.1
X | | 85.5
Rb | | 132.9
Cs | Caesium
55 | 223.0
Fr
Francium | 87 | | * 58 - 71 anthanidae | 140.1
Ce | 140.9
Pr | r 144.2 14 | 144.9
Pm | 150.4
Sm | Pm Sm Eu | 6 7.3 | 158.9
Tb | 162.5
Dy | 158.9 162.5 164.9 16
Tb Dy Ho | .7.3
Er | 168.9 173.0
Tm Yb | 173.0
Yb | 175.0
Lu | |--|--------------------|------------------------------------|-------------------|--------------------|--------------------|-----------------|--------------|--------------------|--------------------|---|-------------------|-----------------------------|--------------------|--------------------| | | Cerium | Praseodymium Neodymium Prom | Neodymium | Promethium | Samarium | Europium | adolin | Terbium | Dysprosium | Holmium | Erbium | Thulium | Ytterbium | Lutetium | | | 58 | 59 60 61 | 60 | 61 | 62 | 63 | 4 | 65 | 66 | 67 | 3 | 69 | 70 | 71 | | 400 to 100 10 | 232.0
Th | 232.0 231.0 238.0 237.0 Th Pa U Np | 238.0
U | 237.0
Np | 239.1
Pu | 243.1 Am | Cm | 247.1
Bk | 252.1
Cf | (252)
Es | 5 7) | (258)
Md | (259)
No | (260)
Lr | | 90 - 103 Actifildes | Thorium | Protactinium Uranium | Uranium | Neptunium | Plutonium | Americium | Curiur | Berkelium | Californium | Einsteinium | ermium | Mendeleviur | Nobelium | Lawrencium | | | 90 | 91 | 92 | 93 | 94 | 95 | 36 | 97 | 98 | 99 | 00 | 101 | 102 | 103 | **Table 1** Proton n.m.r chemical shift data | Type of proton | δ/ppm | |---------------------|---------| | RCH ₃ | 0.7–1.2 | | R_2CH_2 | 1.2–1.4 | | R_3CH | 1.4–1.6 | | RCOCH ₃ | 2.1–2.6 | | $ROCH_3$ | 3.1–3.9 | | RCOOCH ₃ | 3.7–4.1 | | ROH | 0.5-5.0 | **Table 2** Infra-red absorption data | Bond | Wavenumber/cm ⁻¹ | |----------------|-----------------------------| | С—Н | 2850–3300 | | C—C | 750–1100 | | C=C | 1620–1680 | | C=O | 1680–1750 | | C—O | 1000-1300 | | O—H (alcohols) | 3230–3550 | | O—H (acids) | 2500–3000 | | | ssium
produ | nitrate, KNO ₃ , decomposes on strong heating, forming oxygen and solid Y as the acts. | |-----|----------------|--| | (a) | A 1.0 into | $00 \mathrm{g}$ sample of KNO ₃ ($M_{\rm r} = 101.1$) was heated strongly until fully decomposed Y . | | | (i) | Calculate the number of moles of KNO ₃ in the 1.00 g sample. | | | | | | | | | | | (ii) | At 298 K and 100 kPa, the oxygen gas produced in this decomposition occupied a volume of 1.22×10^{-4} m ³ . | | | | State the ideal gas equation and use it to calculate the number of moles of oxygen produced in this decomposition. (The gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$) | | | | Ideal gas equation | | | | Moles of oxygen | | | | | | | | | | | | | | | | (5 marks) | | (b) | | pound Y contains 45.9% of potassium and 16.5% of nitrogen by mass, the inder being oxygen. | | | (i) | State what is meant by the term <i>empirical formula</i> . | | | (ii) | Use the data above to calculate the empirical formula of Y . | | | | | | | | | | | | (4 marks) | | (c) | Dedi | ace an equation for the decomposition of KNO_3 into \mathbf{Y} and oxygen. | | | ••••• | (1 mank) | 3 The table below shows the electronegativity values of some elements. | | Fluorine | Chlorine | Bromine | Iodine | Carbon | Hydrogen | |-------------------|----------|----------|---------|--------|--------|----------| | Electronegativity | 4.0 | 3.0 | 2.8 | 2.5 | 2.5 | 2.1 | | (a) | Define the term <i>electronegativity</i> . | | |-----|--|--| | | | | | | | | | | (2. mark) | | (b) The table below shows the boiling points of fluorine, fluoromethane (CH_3F) and hydrogen fluoride. | | F—F | F

C
H / H
H | Н—F | |-----------------|-----|---------------------------|-----| | Boiling point/K | 85 | 194 | 293 | | (i) | Name the strongest type of intermolecular force present in: | |------|---| | | Liquid F ₂ | | | Liquid CH ₃ F | | | Liquid HF | | (ii) | Explain how the strongest type of intermolecular force in liquid HF arises. | | | | | | | | | | | | | | | (6 marks) | (c) The table below shows the boiling points of some other hydrogen halides. | | HC1 | HBr | HI | |-----------------|-----|-----|-----| | Boiling point/K | 188 | 206 | 238 | | (i) | Explain the trend in the boiling points of the hydrogen halides from HCl to HI. | | | | |------|---|--|--|--| (ii) | Give one reason why the boiling point of HF is higher than that of all the other hydrogen halides. | | | | | | | | | | | | (3 marks) | | | | Turn over for the next question | 4 | (a) | State the meaning of the term first ionisation energy of an atom. | |---|-----|---| | | | | | | | | | | | (2 marks) | | | (b) | Complete the electron arrangement for the Mg ²⁺ ion. | | | | $1s^2$ | | | | (1 mark) | | | (c) | Identify the block in the Periodic Table to which magnesium belongs. | | | | (1 mark) | | | (d) | Write an equation to illustrate the process occurring when the second ionisation energy of magnesium is measured. | | | | (1 mark) | | | (e) | The Ne atom and the Mg ²⁺ ion have the same number of electrons. Give two reasons why the first ionisation energy of neon is lower than the third ionisation energy of magnesium. | | | | Reason 1 | | | | Reason 2 | | | | (2 marks) | 12 | Ther | e is a general trend in the first ionisation energies of the Period 3 elements, Na-Ar | |------|---| | (i) | State and explain this general trend. | | | Trend | | | Explanation | | | | | | | | (ii) | Explain why the first ionisation energy of sulphur is lower than would be predicted from the general trend. | | | | | | | | | (5 marks) | Turn over for the next question (f) ### **SECTION B** Answer both questions in the space provided on pages 10–12 of this booklet. 5 A sample of element \mathbf{Q} was extracted from a meteorite. The table below shows the relative abundance of each isotope in a mass spectrum of this sample of \mathbf{Q} . | m/z | 64 | 66 | 67 | 68 | |------------------------|------|------|------|------| | Relative abundance (%) | 38.9 | 27.8 | 14.7 | 18.6 | (a) Define the term *relative atomic mass* of an element. (2 marks) - (b) Use the data above to calculate the relative atomic mass of this sample of \mathbf{Q} . Give your answer to one decimal place. Suggest the identity of \mathbf{Q} . (3 marks) - (c) In order to obtain a mass spectrum of **Q**, a gaseous sample is first ionised. Describe how ionisation is achieved in a mass spectrometer. Give **three** reasons why ionisation is necessary. (5 marks) - 6 Phosphorus exists in several different forms, two of which are white phosphorus and red phosphorus. White phosphorus consists of P₄ molecules, and melts at 44 °C. Red phosphorus is macromolecular, and has a melting point above 550 °C. Explain what is meant by the term *macromolecular*. By considering the structure and bonding present in these two forms of phosphorus, explain why their melting points are so different. (5 marks) ### **END OF QUESTIONS** | ••••• |
••••• |
 | | |-------|-----------|------|--| | |
 |
 | | Converight © 2006 AOA and its licensors. All rights reserved | | |--|--|