Surname		Other	Names			
Centre Number			Candida	ate Number		
Candidate Signature	·					

Leave blank

General Certificate of Education January 2006 Advanced Subsidiary Examination

CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity

Wednesday 11 January 2006 9.00 am to 10.00 am

For this paper you must have

a calculator

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in Section A and Section B in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
- Your answers to the question in **Section B** should be written in continuous prose, where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

_	-						
-	For Examiner's Use						
Number	Mark	Number	Mark				
1							
2							
3							
4							
5							
6							
Total (Co	lumn 1)	\rightarrow					
Total (Co	lumn 2) _	\rightarrow					
TOTAL							
Examine	r's Initials						

SECTION A

Answer all questions in the spaces provided.

1	(a)	Complete th	he following tab	ole.		
				Relative mass	Relative charge	
			Neutron			
			Electron			
						(2 marks)
	(b)		•	protons as, and foing the mass number		nan, an atom of ⁹ Be.
						(2 marks)
	(c)				te shape of a molec a. Name the shape	ule of Cl ₂ O. Show of each molecule.
			$BeCl_2$		(Cl_2O
		Name of sh	ape		Name of shape	(4 marks)
	(d)	The equation shown below		on between magnes	sium hydroxide and	hydrochloric acid is
		N	$\operatorname{Ig}(OH)_2(s) + 2$	eHCl(aq) → Mg	$gCl_2(aq) + 2H_2O(1$)
				n ³ , of 1.00 mol dm ⁻ nagnesium hydroxi	³ hydrochloric acid de.	required to react

(4 marks)

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

0 (4.0 P	Helium 2 2 20.2	Neon 10	39.9 Ar Argon 18	83.8 K	Krypton 36	131.3 Xe	Xenon 54	222.0 Rn	Radon 86		
5			35.5 (Cl Chlorine Chlorine 17			126.9 1	lodine 53	210.0 At	Astatine 35		
>	16.0	Oxygen	2.1 S Sulphur 6	8 0.0 0.0	Selenium 4	127.6 Te	Tellurium 52	210.0 Po	Polonium 84		
>	14.0	N Nitrogen 7	31.0 P Phosphorus	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83		
≥	12.0	Carbon	28.1 Si Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb			
≡		Boron 5	27.0 AI Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium 49	204.4 TI	Thallium 81		
				65.4 Zn		112.4 Cd		200.6 Hg	Mercury 80		
				63.5 Cu	Copper 29	107.9 Ag		197.0 Au	Gold 79		
				5 8.7	Nickei 28	106.4 Pd	Palladium 46	195.1 Pt			
				28.9 CO	Cobait 27	102.9 Rh	Rhodium 45	192.2 Ir	Iridium 77		
				55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76		
	6.9	Li Lithium -3		54.9 Mn	vanadium Chromium Manganese 23 24 25	98.9 101.1 102.9 Tc Ru Rh	Technetium 43	186.2 Re	Rhenium 75		
	ass —			25.0	Chromium 24	95.9 M (Molybde 42	183.9 W	Tungs 74		
	Key relative atomic mass -	number –				95.9 90	Niobium 41	180.9 Ta	Tantalum 73		
	Key relative	atomic number			ı itanıum 22	91.2 Zr	Zirconium 40	178.5 Hf	Hafnium 72		
	_		Г .	45.0 Sc	Scandium 21	8 8.9	Yttrium 39	138.9 La	Lanthanum 57 * 7	227 Ac tinium	1 68
=	0.0	Be Beryllium 4	24.3 Mg Magnesium 12	40.1 Ca	Calcium 20	87.6 Sr	Strontium 38	137.3 Ba		226.0 Ra	88
- I	Hydrogen 1	Lithium	23.0 Na Sodium	39.1 X		85.5 Rb		132.9 Cs	Caesium 55	223.0 Fr Francium	87

* 58 - 71 anthanidae	140.1 Ce	140.9 Pr	r 144.2 14	144.9 Pm	150.4 Sm	Pm Sm Eu	6 7.3	158.9 Tb	162.5 Dy	158.9 162.5 164.9 16 Tb Dy Ho	.7.3 Er	168.9 173.0 Tm Yb	173.0 Yb	175.0 Lu
	Cerium	Praseodymium Neodymium Prom	Neodymium	Promethium	Samarium	Europium	adolin	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	58	59 60 61	60	61	62	63	4	65	66	67	3	69	70	71
400 to 100 to 10	232.0 Th	232.0 231.0 238.0 237.0 Th Pa U Np	238.0 U	237.0 Np	239.1 Pu	243.1 Am	Cm	247.1 Bk	252.1 Cf	(252) Es	5 7)	(258) Md	(259) No	(260) Lr
90 - 103 Actifildes	Thorium	Protactinium Uranium	Uranium	Neptunium	Plutonium	Americium	Curiur	Berkelium	Californium	Einsteinium	ermium	Mendeleviur	Nobelium	Lawrencium
	90	91	92	93	94	95	36	97	98	99	00	101	102	103

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH ₃	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
RCOCH ₃	2.1–2.6
$ROCH_3$	3.1–3.9
RCOOCH ₃	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
C—O	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

	ssium produ	nitrate, KNO ₃ , decomposes on strong heating, forming oxygen and solid Y as the acts.
(a)	A 1.0 into	$00 \mathrm{g}$ sample of KNO ₃ ($M_{\rm r} = 101.1$) was heated strongly until fully decomposed Y .
	(i)	Calculate the number of moles of KNO ₃ in the 1.00 g sample.
	(ii)	At 298 K and 100 kPa, the oxygen gas produced in this decomposition occupied a volume of 1.22×10^{-4} m ³ .
		State the ideal gas equation and use it to calculate the number of moles of oxygen produced in this decomposition. (The gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$)
		Ideal gas equation
		Moles of oxygen
		(5 marks)
(b)		pound Y contains 45.9% of potassium and 16.5% of nitrogen by mass, the inder being oxygen.
	(i)	State what is meant by the term <i>empirical formula</i> .
	(ii)	Use the data above to calculate the empirical formula of Y .
		(4 marks)
(c)	Dedi	ace an equation for the decomposition of KNO_3 into \mathbf{Y} and oxygen.
	•••••	(1 mank)

3 The table below shows the electronegativity values of some elements.

	Fluorine	Chlorine	Bromine	Iodine	Carbon	Hydrogen
Electronegativity	4.0	3.0	2.8	2.5	2.5	2.1

(a)	Define the term <i>electronegativity</i> .	
	(2. mark)	

(b) The table below shows the boiling points of fluorine, fluoromethane (CH_3F) and hydrogen fluoride.

	F—F	F C H / H H	Н—F
Boiling point/K	85	194	293

(i)	Name the strongest type of intermolecular force present in:
	Liquid F ₂
	Liquid CH ₃ F
	Liquid HF
(ii)	Explain how the strongest type of intermolecular force in liquid HF arises.
	(6 marks)

(c) The table below shows the boiling points of some other hydrogen halides.

	HC1	HBr	HI
Boiling point/K	188	206	238

(i)	Explain the trend in the boiling points of the hydrogen halides from HCl to HI.			
(ii)	Give one reason why the boiling point of HF is higher than that of all the other hydrogen halides.			
	(3 marks)			

Turn over for the next question

4	(a)	State the meaning of the term first ionisation energy of an atom.
		(2 marks)
	(b)	Complete the electron arrangement for the Mg ²⁺ ion.
		$1s^2$
		(1 mark)
	(c)	Identify the block in the Periodic Table to which magnesium belongs.
		(1 mark)
	(d)	Write an equation to illustrate the process occurring when the second ionisation energy of magnesium is measured.
		(1 mark)
	(e)	The Ne atom and the Mg ²⁺ ion have the same number of electrons. Give two reasons why the first ionisation energy of neon is lower than the third ionisation energy of magnesium.
		Reason 1
		Reason 2
		(2 marks)

12

Ther	e is a general trend in the first ionisation energies of the Period 3 elements, Na-Ar
(i)	State and explain this general trend.
	Trend
	Explanation
(ii)	Explain why the first ionisation energy of sulphur is lower than would be predicted from the general trend.
	(5 marks)

Turn over for the next question

(f)

SECTION B

Answer both questions in the space provided on pages 10–12 of this booklet.

5 A sample of element \mathbf{Q} was extracted from a meteorite. The table below shows the relative abundance of each isotope in a mass spectrum of this sample of \mathbf{Q} .

m/z	64	66	67	68
Relative abundance (%)	38.9	27.8	14.7	18.6

(a) Define the term *relative atomic mass* of an element.

(2 marks)

- (b) Use the data above to calculate the relative atomic mass of this sample of \mathbf{Q} . Give your answer to one decimal place. Suggest the identity of \mathbf{Q} . (3 marks)
- (c) In order to obtain a mass spectrum of **Q**, a gaseous sample is first ionised. Describe how ionisation is achieved in a mass spectrometer. Give **three** reasons why ionisation is necessary. (5 marks)
- 6 Phosphorus exists in several different forms, two of which are white phosphorus and red phosphorus. White phosphorus consists of P₄ molecules, and melts at 44 °C. Red phosphorus is macromolecular, and has a melting point above 550 °C.

Explain what is meant by the term *macromolecular*. By considering the structure and bonding present in these two forms of phosphorus, explain why their melting points are so different.

(5 marks)

END OF QUESTIONS

•••••	 •••••	 	

Converight © 2006 AOA and its licensors. All rights reserved	