
Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signat	ure						

General Certificate of Education January 2005 Advanced Subsidiary Examination

CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity

Tuesday 11 January 2005 Morning Session

In addition to this paper you will require: a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in **Section A** and **Section B** in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- This paper carries 30 per cent of the total marks for AS. For Advanced Level this paper carries 15 per cent of the total marks.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
- Your answers to the question in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

	For Exan	niner's Use	
Number	Mark	Number	Mark
1			
2			
3			
4			
5			
Total (Column	1)	\rightarrow	
Total (Column	2)	\rightarrow	
TOTAL			
Examine	r's Initials		

SECTION A

Answer all questions in the spaces provided.

1	(a)	Defi	ne the terms
		(i)	mass number of an atom,
		(ii)	relative molecular mass.
			(3 marks)
	(b)	(i)	Complete the electron arrangement for a copper atom.
			$1s^2$
		(ii)	Identify the block in the Periodic Table to which copper belongs.
		(iii)	Deduce the number of neutrons in one atom of ⁶⁵ Cu
			(3 marks)

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

							_			
0	4.0 He Helium 2	20.2 Ne Neon	39.9 Ar Argon 18	83.8 K	Krypto 36	131.3 Xe	Xenor 54	222.0 Rn	Rador 86	
₹		19.0 F Fluorine	35.5 CI Chlorine 17	79.9 Br	Bromine 35	126.9 –	lodine 53	210.0 At	Astatine 85	
>		16.0 Oxygen 8	32.1 S Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84	
>		14.0 N Nitrogen	31.0 P Phosphorus	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83	
≥		12.0 C Carbon 6	28.1 Si Silicon	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82	
=		10.8	27.0 Al Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium 49	204.4 T	Thallium 81	
				65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg	Mercury 80	
					Copper 29	l				
				.8.7 E	Nickel 8	06.4 Pd	Palladium 6	95.1 P	Platinum '8	
				58.9 Co	Cobalt 27	102.9 Rh	Rhodium 45	192.2 r	Iridium 77	
				55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76	
		6.9 Li Lithium		54.9 Mn	Manganese 25	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75	
			'	52.0 Ç	m Chromium Manganese Iron Cobalt 24 25 26 27 2	95.9 Mo	Molybdenum 42	183.9 W	Tungsten 74	
		tomic ma ımber —		50.9 V	Vanadium 23	95.9 N	Niobiur 41	180.9 Ta	Tantalum 73	
	Key	relative atomic mass atomic number ——		47.9 Ti	Titanium 22	91.2 Zr	_	78.5 Hf	Hafnium 72	
	-			45.0 Sc	dium			138.9 La		227 Ac Actinium 89 †
=		9.0 Be Beryllium 4	24.3 Mg Magnesium 12	40.1 S	_	87.6 Sr	Strontium 38	137.3 Ba	_	226.0 Ra Radium 88
_	I.0 H Hydrogen		23.0 Na Sodium	39.1 K		85.5 8		132.9 Cs	Caesium 55	223.0 Fr Francium 87

- VI	140.1 Ce	Ce Pr Nd Pm	144.2 Nd	144.9 Pm	150.4 Sm	152.0 Eu		158.9 Tb	162.5 Dy				173.0 Yb	175.0 Lu
36 - 71 Lanmanides	Cerium 58	Praseodymium 59	Pronon Neodymium Pronon 60 61	Promethium 61	_		Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 8	Thulium 69	Ytterbium 70	Lutetium 71
	232.0 231.0 Th Pa		238.0 U	237.0 Np	239.1 Pu	243.1 Am		247.1 BK	252.1 (252) (;	(252) Es	257) Fm	(258) Md	(259) No	(260) Lr
† 90 – 103 Actinides	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94			Berkelium 97	Californium 98	Einsteinium 99	Fermium 00	Mendelevium 101		Lawrencium 103

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

(c)	atom	ample of copper contains the two isotopes 63 Cu and 65 Cu only. It has a relative nic mass, A_r , less than 64. The mass spectrum of this sample shows major peaks with values of 63 and 65, respectively.						
	(i)	Explain why the $A_{\rm r}$ of this sample is less than 64.						
	(ii)	Explain how Cu atoms are converted into Cu ⁺ ions in a mass spectrometer.						
	(iii)	In addition to the major peaks at $m/z = 63$ and 65, much smaller peaks at $m/z = 31.5$ and 32.5 are also present in the mass spectrum. Identify the ion responsible for the peak at $m/z = 31.5$ in the mass spectrum. Explain why your chosen ion has this m/z value and suggest one reason why this peak is very small.						
		Identity of the ion						
		Explanation for m/z value						
		Reason why this peak is very small						
		(6 marks)						

 $\left(\frac{1}{12}\right)$

TURN OVER FOR THE NEXT QUESTION

2 (a) Ammonium sulphate reacts with aqueous sodium hydroxide as shown by the equation below.

$$(NH_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$$

A sample of ammonium sulphate was heated with $100\,\mathrm{cm}^3$ of $0.500\,\mathrm{mol\,dm}^{-3}$ aqueous sodium hydroxide. To ensure that all the ammonium sulphate reacted, an excess of sodium hydroxide was used.

Heating was continued until all of the ammonia had been driven off as a gas.

The unreacted sodium hydroxide remaining in the solution required 27.3 cm³ of 0.600 mol dm⁻³ hydrochloric acid for neutralisation.

(i)	Calculate the original number of moles of NaOH in 100 cm ³ of 0.500 mol dm ⁻³ aqueous sodium hydroxide.
(ii)	Calculate the number of moles of HCl in $27.3\mathrm{cm^3}$ of $0.600\mathrm{moldm^{-3}}$ hydrochloric acid.
(iii)	Deduce the number of moles of the unreacted NaOH neutralised by the hydrochloric acid.
(iv)	Use your answers from parts (a)(i) and (a)(iii) to calculate the number of moles of NaOH which reacted with the ammonium sulphate.
(v)	Use your answer in part (a)(iv) to calculate the number of moles and the mass of ammonium sulphate in the sample.
	(If you have been unable to obtain an answer to part (a)(iv), you may assume that the number of moles of NaOH which reacted with ammonium sulphate equals 2.78×10^{-2} mol. This is not the correct answer.)
	Moles of ammonium sulphate
	Mass of ammonium sulphate
	(7 marks)

(b)	A 0.143 g gaseous sample of ammonia occupied a volume of 2.86×10^{-4} m ³ at a temperature T and a pressure of 100 kPa.
	State the ideal gas equation, calculate the number of moles of ammonia present and deduce the value of the temperature T . (The gas constant $R = 8.31 \mathrm{JK}^{-1} \mathrm{mol}^{-1}$)
	Ideal gas equation
	Moles of ammonia
	Value of T
	(4 marks)

TURN OVER FOR THE NEXT QUESTION

3	(a)		nesium and chlorine react together to form the ionic compound magnesium ride, MgCl ₂ .
		(i)	Explain how each of the ions in this compound is formed.
		(ii)	Explain why compounds with ionic bonding tend to have high melting points.
			(4 marks)
	(b)	(i)	Define the term <i>electronegativity</i> .
		(ii)	Explain why electronegativity increases across a period in the Periodic Table.
			(4 marks)
	(c)	Chlo	ride ions are polarised more by aluminium ions than they are by magnesium ions.
		(i)	State what is meant by the term <i>polarised</i> .
		(ii)	Why is a chloride ion polarised more by an aluminium ion than by a magnesium ion?
		(iii)	Predict the type of bonding in aluminium chloride.
			(5 marks)

4	(a)	Amr	nonia, NH ₃ , reacts with sodium to form sodium amide, NaNH ₂ , and hydrogen.						
		(i)	Write an equation for the reaction between ammonia and sodium.						
		(ii)	Draw the shape of an ammonia molecule and that of an amide ion, NH_2^- In each case show any lone pairs of electrons.						
			$\mathrm{NH_3}$ $\mathrm{NH_2^-}$						
		(iii)	State the bond angle found in an ammonia molecule.						
		(iv)	Explain why the bond angle in an amide ion is smaller than that in an ammonia molecule.						
			(6 marks)						
	(b)		alt, X , contains 16.2 % by mass of magnesium, 18.9 % by mass of nitrogen and 64.9 % mass of oxygen.						
		(i)	State what is meant by the term <i>empirical formula</i> .						
		(ii)	Determine the empirical formula of X .						
			(3 marks)						

 $\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$

SECTION B

Answer the question below in the space provided on pages 10 to 12 of this booklet.

5	(a)	Iodine and diamond are both crystalline solids at room temperature. Identify one
		similarity in the bonding, and one difference in the structures, of these two solids.
		Explain why these two solids have very different melting points.

(6 marks)

- (b) (i) For the elements Mg-Ba, state how the solubilities of the hydroxides and the solubilities of the sulphates change down Group II.
 - (ii) Describe a test to show the presence of sulphate ions in an aqueous solution. Give the results of this test when performed on separate aqueous solutions of magnesium chloride and magnesium sulphate. Write equations for any reactions occurring.
 - (iii) State the trend in the reactivity of the Group II elements Mg-Ba with water. Write an equation for the reaction of barium with water.

(9 marks)

END OF QUESTIONS

•••••
•••••
•••••
•••••
•••••
•••••

•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
 •••••
