
Surname	me			Names			
Centre Number				Candida	ate Number		
Candidate Signature							

General Certificate of Education June 2004 Advanced Subsidiary Examination

CHEMISTRY CHM3/W Unit 3(a) Introduction to Organic Chemistry

Thursday 10 June 2004 Morning Session

In addition to this paper you will require: a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in **Section A** and **Section B** in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- This paper carries 25 per cent of the total marks for AS. For Advanced Level this paper carries 12½ per cent of the total marks.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
- Your answers to the question in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use					
Number	Mark	Number	Mark		
1					
2					
3					
4					
5					
Total (Column	1)	\rightarrow			
Total → (Column 2)					
TOTAL					
Examine	Examiner's Initials				

SECTION A

Answer all questions in the spaces provided.

1	(a)	Etha	nol, C_2H_5OH , can be made from glucose, $C_6H_{12}O_6$
		(i)	Write an equation to represent this reaction.
		(ii)	Give the name of this process for making ethanol.
			(2 marks)
	(b)	Etha	nol can be used as a fuel in the internal combustion engine of a motor car.
		(i)	Write an equation for the complete combustion of ethanol.
		(ii)	Identify a pollutant produced when ethanol is burned in a limited supply of air.
		(iii)	Nitrogen monoxide, NO, is a pollutant gas produced by motor cars. Write an equation to represent a reaction occurring in the catalytic converter which decreases the amount of this pollutant.
			(3 marks)

175.0 **Lu** Lutetium 71

Ytterbium 70

Thulium

167.3 **Er** Erbium 68

Dysprosium Holmium 66

Terbium 65

Gadolinium 64

162.5 **Dy**

158.9 **Tb**

157.3 **Gd**

 140.9
 144.2
 144.9
 150.4
 152.0

 Praseodymium Neodymium Segonarium Segonar

Cerium 58

* 58 - 71 Lanthanides

140.1 **Se** (260) **Lr** Lawrencium

Mendelevium Nobelium

Fermium 100

Californium Einsteinium 98

Berkelium 97

96

Neptunium Plutonium Americium 93 94 95

Uranium 92

232.0 **Th** Thorium

† 90 – 103 Actinides

(252.1 **Cf**

|247.1 **BK**

Curium

Am

Pu

238.0 **U**

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

				T						
0	4.0 He Helium 2					131.3 Xe	Xenon 54	222.0 Rn	Radon 86	
=		19.0 F Fluorine 9	35.5 C Chlorine 17	79.9 Br	Bromine 35	126.9 	lodine 53	210.0 At	Astatine 85	
>		16.0 O Oxygen 8	32.1 S Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	uth Polonium 84 8	
>		14.0 N Nitrogen 7	31.0 S.1 Shosphorus Sulphur 15	74.9 As	Arsenic 33	121.8 Sb	Antim 1	0.60 ia	Bismu 3	
≥		2.0 Carbon	8.1 Si licon	.2.6 Ge	aermanıur 2	18.7 Sn	O Tin	207.2 Pb	Lead 82	
=		10.8 B Boron 5	27.0 AI Aluminium 13		Gallium 31	114.8 In	Indium 49	204.4 TI	Thallium 81	
				65.4 Zn	7 7 7 7 30 7 10 2 10 2 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	112.4 Cd	Cadmium ,	200.6 Hg	Mercury 30	
				ري ا	Copper	7.9 Ag	Silver	7.0 Au	Gold	
				. iz	Nickei 18	. Pd	Palladium 46 /	. Pt	Platinum 78	
				6.83 6.83	Cobalt 27	. 02.9 Rh	Rhodium 2	. 65.2 L	lridium 7	
				.5.8 Fe	10u 9;	01.1 1	Suthenium 4	90.2 Os	Osmium 6	
		6.9 Li Lithium		.4.9 Mn	ranganese 25	18.9 Tc	echnetium F	86.2 Re	Rhenium 7	
				.5.0 .5.0	Chromium 74	6.9 oM	Nolybdenum 7	83.9 V	Tungsten 7	
		omic mas mber —		> 20.9	Vanadium 2	95.9 QN	Niobium N	180.9 Ta	Tantalum 7	
	Key	relative atomic mass – atomic number ———				91.2 g		178.5 Hf	Hafnium 72	
	<u>*</u>	_		85.0 Sc		88.9 S	Yttrium 4	138.9 La	Lanthanum 57 * 7	Actinium 89 †
=		9.0 Be Beryllium 4		40.1 Ca			_	137.3 1 Ba		226.0 2 Ra Radium 88
_	.0 H Hydrogen		23.0 2 2 Na Sodium N 11 1 1 1 1	39.1 K	Potassium 19	85.5 8		132.9 CS		3.0 Fr ancium
	- +-	<u>დ</u> ო	i i	ĕ '	<u>+ ₩</u>	ĕ	37 37	 	<u>21, C</u>	22% Fr ₁ 87

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500-3000

(c) Ethene can be formed by the dehydration of ethanol using concentrated sulphuric acid. Name and complete a mechanism for this reaction.

Name of mechanism

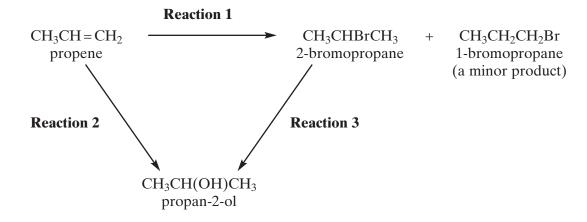
Mechanism

$$\begin{array}{ccc} H & H \\ H - C - C - H & \longrightarrow \\ HO: & H \\ H^+ & \end{array}$$

(5 marks)

(d) Epoxyethane is manufactured from ethene. Give a suitable catalyst for this manufacturing process. Write an equation for the reaction, clearly showing the structure of epoxyethane.

Catalyst


Equation

......(3 marks)

Turn over

2 Consider the following reaction scheme.

(a)	(i)	Name the mechanism for Reaction 1 .	
			•••••
	(ii)	Explain why 1-bromopropane is only a minor product in Reaction 1 .	
			(3 marks)
b)	Give	a suitable reagent and state the essential conditions required for Reac	ction 3.
	Reag	ent	
	Cond	ditions	
			(2 marks)

(c)	The reagent used for Reaction 3 can also be used to convert 2-bromopropane into
	propene. State the different conditions needed for this reaction.

.....(1 mark)

(d) Reaction 2 proceeds in two stages.

Stage 1
$$CH_3CH=CH_2 + H_2SO_4 \rightarrow CH_3CH(OSO_2OH)CH_3$$

(i) Name the class of alcohols to which propan-2-ol belongs.

$$Stage\ 2$$
 $CH_3CH(OSO_2OH)CH_3 + H_2O \rightarrow CH_3CH(OH)CH_3 + H_2SO_4$

(ii)	Outline a m	nechanism	for Stage	1 of Reaction 2	using co	ncentrated	sulni	huric a	acid
(11)	Outilile a li	песнанияни	TOL STAPE	TO Reaction 2	z. using co	псеннатес	SHID	ишис а	1CIC

(iii)	State the overall role of the sulphuric acid in Reaction 2 .	

(6 marks)

TURN OVER FOR THE NEXT QUESTION

3	(a)	(i)	Give a suitable reagent and state the necessary conditions for the conversion of propan-2-ol into propanone. Name the type of reaction.				
			Reagent				
			Conditions				
			Type of reaction				
		(ii)	Propanone can be converted back into propan-2-ol. Give a suitable reagent and write an equation for this reaction. (Use [H] to represent the reagent in your equation.)				
			Reagent				
			Equation				
			(5 marks)				
	(b)	Prop	anal is an isomer of propanone.				
	(-)	-					
		(i)	Draw the structure of propanal.				
		(ii)	A chemical test can be used to distinguish between separate samples of propanone and propanal. Give a suitable reagent for the test and describe what you would observe with propanone and with propanal.				
			Test reagent				
			Observation with propanone				
			Observation with propanal				
			(4 marks)				

TURN OVER FOR THE NEXT QUESTION

•	(a)		mechanism for this reaction is similar to the mechanism for the chlorination of tane.
		(i)	Name the mechanism for this reaction.
		(ii)	Give the name of, and state an essential condition for, the first step in the mechanism for this reaction.
			Name
			Essential condition
		(iii)	Write an equation for a termination step in the mechanism for this reaction which gives ethane as a product.
		(iv)	Bromomethane can undergo further substitution. Write an overall equation for the reaction between bromomethane and bromine in which dibromomethane is formed.
			(5 marks)

(b) Bromomethane reacts with the nucleophile ammonia according to the following equation.

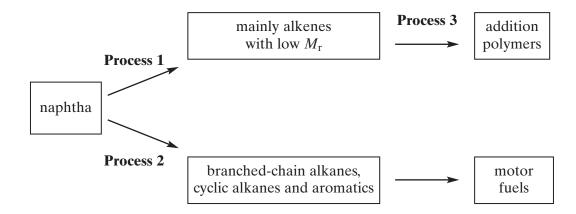
$$CH_3Br \ + \ 2NH_3 \ \longrightarrow \ CH_3NH_2 \ + \ NH_4Br$$

(i) Explain what is meant by the term *nucleophile*.

(ii) Name the organic product of this reaction.

(iii) Outline a mechanism for this reaction.

(6 marks)



TURN OVER FOR THE NEXT QUESTION

SECTION B

Answer the question below in the space provided on pages 12 to 16 of this booklet.

5 Naphtha is one of the fractions obtained from crude oil and is a source of useful products.

- (a) Naphtha is separated from crude oil by the process of fractional distillation. Outline the essential features of fractional distillation and explain why separation is achieved by this process. (4 marks)
- (b) Give a name for **Process 1**. State **one** essential condition and name the type of reactive intermediate involved in this process. Write an equation to show how one molecule of an alkane $C_{13}H_{28}$ can be converted into two molecules of ethene, one molecule of propene and one molecule of an alkane. (5 marks)
- (c) **Process 2** produces branched-chain alkanes and cyclic alkanes from larger alkanes. Give a name for **Process 2** and name the type of reactive intermediate involved in this process. Draw **one** possible structure for each of the alkanes C_5H_{12} and C_6H_{12} which are produced in **Process 2**. Name the alkane C_5H_{12} which you have drawn. (5 marks)
- (d) Write an equation to illustrate the formation of an addition polymer from propene in **Process 3**. (1 mark)

END OF QUESTIONS

•••••	 	•••••	
	 	•••••	
	 	•••••	

•••••
•••••
•••••
•••••
•••••
 •••••
 •••••
 ••••••
 •••••
 ••••••
•••••

•••••••••••••••••••••••••••••••••••••••
•••••
•••••
•••••
 •••••
 •••••
 •••••
 •••••

 •••••
••••••
 •••••