

Mark scheme June 2003

GCE

Chemistry

Unit CHM4

Copyright © 2003 AQA and its licensors. All rights reserved.

SECTION A

Answer all questions in the spaces provided.

1	expe mea	erimer sured	of the reaction of the carried of using differe eaction with	ut at the sont concent	ame temp rations of	erature A and	B. These	experime results we	ent the initi ere used to	al rate was
	(a)	Wha	nt is meant by	the term	order of re	action	with respe	ect to A?		
		ol	power index	of co	ncentro	tion	term	(in l	rati eq'	(')
		0	r shown a	rs × i	 ሳ		,· x		***************	(1 mark)
	(b)		n the concen or of 4. Dedu					ed, the ini	tial rate inc	reased by a
	٠		2	(1))					
										(1 mark)
	(c)		other experi entration of I							
		(i)	Deduce the	order of re	eaction wi	th resp	ect to A a	nd the ord	ler with resp	pect to B.
•			Order with	respect to A	i	2	<u>(1)</u>	**************		
			Order with 1							
		(ii)	Using your suggest suita	able units f	or the rate	const	ant.	•		:
allow con cli		V	Rate equation	n(rate =) k	[A] ²	(1)	•
			Units for the	rate const	ant	mol	1 dm ³	s ⁻	(1)	
		Cor	weg on rat	e equation	lh.					
										(1 martes)

Turn over

		o a constant temperature, the	=	_	·
•	•	$PCl_3(g) + Cl_2(g) =$	\geq PCl ₅ (g)	$\Delta H^{\circ} = -93 \mathrm{kJ} \mathrm{mol}^{-1}$	1
A	At equili	orium, 0.166 mol of PCl ₅ ha	d been formed a	nd the total pressure	was 225 kPa.
((a) (i)	Calculate the number of Moles of PCl ₃ 0.34			
		Moles of Cl_2 $0 \cdot 26$	8 - 0.166	= 0.102	(1)
	(ii)				mixture. allow 2sig figs (3 marks)
(1		e fraction of PCl ₃			
	Part	ial pressure of PCl₃	$= mol f^n$ $= 0.400$	× total P × 225 =	(1) 90(1) (kla) (1) (3 marks)
(0	c) (i)	Write an expression for the $K_p = \frac{P_{PGIS}}{P_{PGIS}}$			
of kp × in (blow max 2 y abstitution of	(i)	The partial pressures of Cl 83.6 kPa, respectively, and value of K_p at this temper $K_p = 83.6$ 90.1×51.3	l ₂ and PCl ₅ in the the total pressuature and state i	e equilibrium mixtur are remained at 225 ats units (1-81 × 10-5	e were 51.3 kPa and kPa. Calculate the
nd consequ	units	90·1 × 51·3		(1)	(.1.)
(d		(1) if 83.6 and 51.3 wr the effect on the mole frac the volume of the vessel w	ory Way row tion of PCl3 in t	nd, AE-1, 6.1 the equilibrium mixtu	welt = (4 marks) 81 ×10 ⁻³ ure if
	· · ·	***************************************	ed (1)		
	(ii)	in chase	•	onstant volume.	
					(2 marks)

penalize pH given to 1 dp first time it would have scored only

- 3 (a) At 50 °C, the ionic product of water, K_w , has the value $5.48 \times 10^{-14} \,\mathrm{mol}^2 \,\mathrm{dm}^{-6}$.
 - (i) Define the term $K_{\rm w}$ or in words or below $K_{\rm W} = [H^+][OH^-]$ (1) unless contradiction
 - (ii) Define the term pH $pH = -\log \left[H^{+}\right] \qquad (i)$
 - (iii) Calculate the pH of pure water at 50 °C. Explain why pure water at 50 °C is still neutral even though its pH is not 7.

Calculation $[H^{+}] = \sqrt{5.48 \times 10^{-14}} (1)$ = 2.34×10^{-7}

pH = 6.63 or 6.64 (1)Explanation pure water : [H+] = [OH-] (1)

(5 marks)

- (b) At 25 °C, $K_{\rm w}$ has the value $1.00 \times 10^{-14} \, {\rm mol}^2 \, {\rm dm}^{-6}$. Calculate the pH at 25 °C of
 - (i) a 0.150 mol dm⁻³ solution of sodium hydroxide, $[OH^{-}] = 0.150 \quad \therefore \quad [H^{+}] = \frac{10^{-14}}{0.15} (1) = 6.66 \times 10^{-14}$ $0 \vdash POH = 0.82$

 $\therefore PH = 13.18 (1)$

(ii) the solution formed when 35.0 cm³ of this solution of sodium hydroxide is mixed with 40.0 cm³ of a 0.120 mol dm⁻³ solution of hydrochloric acid.

moles $0H^{-} = (35 \times 10^{-3}) \times 0.150 = 5.25 \times 10^{-3} (1)^{0}$ moles $H^{+} = (40 \times 10^{-3}) \times 0.120 = 4.80) \times 10^{-3} (1)^{0}$

excess moles of OH = 4.5×10^{-4} (1)² :. $[OH-] = (4.5) \times 1000 \times 10000 \times 100000 \times 10000 \times 10000 \times 10000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1$

 $= 6.00 \times 10^{-3}$

- (c) In a 0.150 mol dm⁻³ solution of a weak acid HX at 25 °C, 1.80 % of the acid molecules are dissociated into ions.
 - (i) Write an expression for K_a for the acid HX.

$K_{a} = \underbrace{[H^{+}][X^{-}]}_{[UV]}$	(1)	
	()	
[HX]		 •

(ii) Calculate the value of K_a for the acid HX at this temperature and state its units.

$$[H+] = 1.80 \times 10^{-2} \times 0.150 = 2.70 \times 10^{-3} (1)$$

$$Ka = [H+]^{2} = (2.70 \times 10^{-3})^{2} = 4.86 \times 10^{-5} \text{ mol dm}$$

$$[HX] = 0.150 = 4.95 \times 10^{-5}$$

$$[I] = 1.80 \times 10^{-2} \times 0.150 = 2.70 \times 10^{-3} (1)$$

$$[HX] = 1.80 \times 10^{-3} \times 10^{-3} \times 10^{-5}$$

$$[I] = 1.80 \times 10^{-2} \times 0.150 = 2.70 \times 10^{-3} (1)$$

(5 marks)

	 		The state of the s
Qu3	(a)	If K _w includes H ₂ O allow 6.63 if seen otherwise no m	narks likely
	(b)(ii)	If no vol, max 4 for a, b, c, f	answer = 10.65
		If wrong volume, max 5 for a, b, c, e, f	
		If no subtraction max 3 for a, b, d.	
		If missing 1000 max 5 for a, b, c, d, f	answer = 8.78
		If uses excess as acid, max 4 for a, b, d, f,	answer = 2.22
		If uses excess as acid and no volume, max 2 for a,b,	(answer = 3.35)
	(c)	If wrong K _a in (i) max 2 in part (ii) for [H ⁺] (1) and co	onseq units (1)

but mark on fully from minor errors eg no [] or charges missing

42

4 (a) Outline a mechanism for the reaction of CH₃CH₂CH₂CHO with HCN and name the product.

Mechanism

(1) M2

ollow
$$C_3H_7$$

if structure

shown

elsewhere

$$O(-7 H^{+})$$

elsewhere

$$O(-7 H^{+})$$

$$O$$

(b) Outline a mechanism for the reaction of CH₃OH with CH₃CH₂COCl and name the organic product.

Name of organic product methyl propanoate (1)
(5 marks)

(c) An equation for the formation of phenylethanone is shown below. In this reaction a reactive intermediate is formed from ethanoyl chloride. This intermediate then reacts with benzene.

(i) Give the formula of the reactive intermediate.

([]CH3CO[])* (1)

(ii) Outline a mechanism for the reaction of this intermediate with benzene to form phenylethanone.

$$\begin{array}{cccc}
& & & & & & & & & \\
\downarrow & & & & & & & \\
\downarrow & & & & & & \\
\downarrow & & & & & & \\
\downarrow & &$$

(4 marks)

4	abc	extra curly arrows are penalised
-	(a)	be lenient on position of negative sign on :CN but arrow must come from lp
	(a)/(b)	C=O alone loses M2 but can score M1 for attack on C ⁺ , similarly C—Cl
	(a)	allow 2-hydroxypentanonitrile or 2-hydroxypenta(ne)nitrile not pentylnitrile
	(b)	in M4, allow extra :Cl ⁻ attack on H, showing loss of H ⁺ .
	(c)(i)	Allow formula in an "equation" (balanced or not); be lenient on the position of the + on the formula

don't be too harsh about the horseshoe, but + must not be close to the saturated C

M3 must be final step not earlier; allow M3 even if structure (M2) is wrong

for M1 the arrow must go to the C or the + on the C

(c)(ii)

5 The hydrocarbon M has the structure shown below.

$$\begin{array}{c} CH_3CH_2-C=CH_2 \\ CH_3 \end{array}$$

(i) Name hydrocarbon M.

-methylbut-1-ene (1)

allow C2H5

(ii) Draw the repeating unit of the polymer which can be formed from M. State the type of polymerisation occurring in this reaction.

(-) c- c+2(-) (1) Repeating unit

Type of polymerisation

or radical The reaction between M and benzene in the presence of HCl and AlCl₃ is similar to the reaction between ethene and benzene under the same conditions. Name the type of mechanism involved and draw the structure of the major product formed in the reaction between M and benzene

Name of mechanism

Major product

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

Draw a structural isomer of M which shows geometrical isomerism.

$$CH_3CH = CHCH_2CH_3 \qquad (1)$$

(6 marks)

Draw the repeating unit of the polymer formed by the reaction between butanedioic acid and hexane-1,6-diamine. State the type of polymerisation occurring in this reaction and give a name for the linkage between the monomer units in this polymer.

Repeating unit

ptide or polyamide (1)

SECTION B

Answer both the questions in the space provided on pages 12 to 16 of this booklet.

6 Use the data given on the back of the Periodic Table on page 3 of this booklet to help you answer this question.

Compounds A to G are all isomers with the molecular formula $C_6H_{12}O_2$

- (a) Isomer A, C₆H₁₂O₂, is a neutral compound and is formed by the reaction between compounds X and Y in the presence of a small amount of concentrated sulphuric acid. X and Y can both be formed from propanal by different redox reactions. X has an absorption in its infra-red spectrum at 1750 cm⁻¹.
 Deduce the structural formulae of A, X and Y. Give suitable reagents, in each case, for the formation of X and Y from propanal and state the role of concentrated sulphuric acid in the formation of A.
- (b) Isomers B, C, D and E all react with aqueous sodium carbonate to produce carbon dioxide.

Deduce the structural formulae of the three isomers that contain an asymmetric carbon atom.

The fourth isomer has only three singlet peaks in its proton n.m.r. spectrum. Deduce the structural formula of this isomer and label it E. (4 marks)

(c) Isomer \mathbf{F} , $C_6H_{12}O_2$, has the structural formula shown below, on which some of the protons have been labelled.

A proton n.m.r. spectrum is obtained for \mathbf{F} . Using Table 1 on page 4 of this booklet, predict a value of δ for the protons labelled a and also for those labelled b. State and account for the splitting patterns of the peaks assigned to the protons a and b.

(6 marks)

(d) Isomer G, C₆H₁₂O₂, contains six carbon atoms in a ring. It has an absorption in its infra-red spectrum at 3270 cm⁻¹ and shows only three different proton environments in its proton n.m.r. spectrum. Deduce a structural formula for G. (2 marks)

Mark Scheme

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5	(b)	allow outer horizontal bonds to be omitted allow HO-[]-H if [] shows the repeating unit.; if brackets missing in the dimer, penalise one. penalise C_2H_4 or C_6H_{12} first time only allow CONH allow polypeptide or polyamide; peptide or amide must be spelled correctly

Turn over

- 7 (a) Outline a mechanism for the formation of ethylamine from bromoethane. State why the ethylamine formed is contaminated with other amines. Suggest how the reaction conditions could be modified to minimise this contamination. (6 marks)
 - (b) Suggest one reason why phenylamine cannot be prepared from bromobenzene in a similar way. Outline a synthesis of phenylamine from benzene. In your answer you should give reagents and conditions for each step, but equations and mechanisms are not required.

 (5 marks)

END OF QUESTIONS

• • • • • • • • • • • • • • • • • • • •	.,						
6	(a)	first mark for C=O stated or shown in X (Ignore wrong names) Y CH3CH2CH2OH allow C3H7 in A if Y correct. or vice yersa Allow (1) for A if correct conseq to wrong X and Y					
	(a)	other oxidising agents: acidified KMnO4; Tollens; Fehlings					
	(a)	other reducing agents: LiAlH ₄ ; Na/ethanol; Ni/H ₂ ; Zn or Sn or Fe/HCl					
	(b)	give (1) for carboxylic acid stated or COOH shown in each suggestion (1) for correct E any 2 out of 3 for B, C or D. allow C ₃ H ₇ for either the B or D shown on the mark scheme i.e. a correct structure labelled B, C or D will gain 2.					
	(c)	protons a – quartet must be correct to score 3 adjacent H mark. Same for b					
	(d)	allow (1) for any OH (alcohol) shown correctly in any structure – ignore extra functional groups. Structure must be completely correct to gain second mark					
	••••••						

c) $-0cH_2 - 3\cdot 1 - 3\cdot 9$ (1) $-cH_2 - 2\cdot 1 - 2\cdot 6$ (1) a: quartet (1) 3 adjacent H (1) b: triplet (1) 2 adjacent H (1)	17
Y is $CH_3CH_2CH_2OH$ (!) A is $CH_3CH_2CH_2OH$ (!) $COCH_2CH_2CH_3$ Nagent: NaBH4 (!) $CONC H_2SO_4$: eatalyst (!) $CH_3CH_2CH_2 - C - COOH$ (!) $CH_3 - CH_2 - C - CH_2COOH$ (!) $CH_3 - CH_2 - CH_2 - COOH$ (!) $CH_3 - CH_2 - CH_2 - CH_2 - COOH$ (!) $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - COOH$ (!) $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - COOH$ (!) $CH_3 - CH_2 -$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•••••
Propanal $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Propanal $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	•••••
> Y Magent: NaBH4 (1) conc H2SO4: eatalyst (1) H H H H H H H H	•••••
> Y Magent: NaBH4 (1) conc H ₂ SO ₄ : eatalyst (1) H H H H H H H H	
b) $CH_{3}CH_{2}CH_{2}-C-cooH$ (1) $CH_{3}-CH_{2}-C-CH_{2}cooH$ (2) CH_{3} C CH_{3} $CH_{$	•••••
b) $CH_{3}CH_{2}CH_{2}-C-cooH$ (1) $CH_{3}-CH_{2}-C-CH_{2}cooH$ (2) CH_{3} C CH_{3} $CH_{$	
b) $CH_{3}CH_{2}CH_{2}-C-cooH$ (1) $CH_{3}-CH_{2}-C-CH_{2}cooH$ (2) CH_{3} C CH_{3} $CH_{$	tal
CH ₃ B CH_3 C CH_3 C CH_3 C CH_3 C CH_3 C CH_3 $CH_$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$!)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•••••
in any order (H_3, CH_3, D) in any order (I)	
in any order (H_3, CH_3, D) in any order (I)	-
in any order) -0.04_{2} $3.1-3.9$ (1) $-0.15-0 2.1-2.6$ (1) a: quartet (1) 3 adjacent H (1) b: triplet (1) 2 adjacent H (1)	•••••
-) $-0cH_{2}$	1 mar
$-cH_{2}-c- 2\cdot 1-2\cdot 6 (1)$ 0 a: quartet (1) 3 adjacent H (1) b: triplet (1) 2 adjacent H (1)	•••••
$-cH_{2}-c- 2\cdot 1-2\cdot 6 (1)$ 0 a : quartet (1) 3 adjacent H (1) b : triplet (1) 2 adjacent H (1)	••••
a: quartet (1) 3 adjacent H (1) b: triplet (1) 2 adjacent H (1)	
	•••••
	6 mai
d) 3269 cm ⁻¹ : OH alcohol (1)	•••••
on anomo C	
C in H. M.	mar
$\frac{1}{40}$ $\frac{1}{40}$ $\frac{1}{10}$ $\frac{1}{10}$	_max

Qu	estion	. 7
(<u>a)</u>	C	$H_3CH_2 - Br \rightarrow CH_3CH_2 - N_T + (-1)$ $M^2 \qquad + (1) \qquad + (1)$ $M^2 \qquad + (1) \qquad + (1)$
********	(NH ₃
		M all a
	Furth	er reaction/substitution / formation of II /III amines et
***************************************	use	an excess of NH3 (1)
		(6 marks)
•		
(b)	1	> repels nucleophiles (such as NH3) (1)
\		
***********	\sim	CHN03(1)) NO2 Sh/HCD NH2
*******	[O]	\rightarrow \downarrow
**********		CH2504(1) 2 (1)
*********		20-60°C(1)] (5 marks)
	•••••	
***************************************		[TOTAL II]
7	(a)	allow SN1
		penalise: Br instead of NH ₃ removing H for M4
		not contamination with other amines (this is in the question), not diamines
	(b)	allow because NH ₃ is a nucleophile or benzene is (only) attacked by electrophiles or C-Br bond (in bromobenzene) is stronger/less polar or Br lp delocalized
	(b)	HNO_3/H_2SO_4 without either conc scores (1) allow $20 - 60^{\circ}$ for (1) (any 2 ex 3)
		allow name or structure of nitrobenzene
		other reducing agents: Fe or Sn with HCl (conc or dil or neither)
		not conc H ₂ SO ₄ or conc HNO ₃ allow Ni/H ₂
		Not NaBH ₄ or LiAlH ₄
		ignore wrong descriptions for reduction step eg hydrolysis or hydration

General Organic points for CHM4

Deurly arrows must show movement of a pair of electrons i.e. from bond to atom or from lp to atom/space e.e. H₃N: > C - Br OR H₃N: \ C - Br

enablize sticks (i.e. -c-) once per paper.

HO-C-R or R-C-OH or -NH2 \(\text{NN} - \frac{1}{c} - \text{RN} - \