| Surname | | | | Other | Names | | | | |-----------|--------|-----|--|-------|---------|------------|--|--| | Centre Nu | mber | | | | Candida | ate Number | | | | Candidate | Signat | ure | | | | | | | General Certificate of Education January 2003 Advanced Subsidiary Examination # CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry Friday 10 January 2003 Morning Session In addition to this paper you will require: a calculator. Time allowed: 1 hour 30 minutes # **Instructions** - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer **all** questions in **Section A** and **Section B** in the spaces provided. All working must be shown. - Do all rough work in this book. Cross through any work you do not want marked. - The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination. ### **Information** - The maximum mark for this paper is 90. - Mark allocations are shown in brackets. - This paper carries 30 per cent of the total marks for AS. For Advanced Level this paper carries 15 per cent of the total marks. - You are expected to use a calculator where appropriate. - The following data may be required. Gas constant $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ - Your answers to questions in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate. ### **Advice** • You are advised to spend about 1 hour on **Section A** and about 30 minutes on **Section B**. Copyright © 2003 AQA and its licensors. All rights reserved. | For Examiner's Use | | | | | | | |--------------------|--------------|---------------|------|--|--|--| | Number | Mark | Number | Mark | | | | | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | Total
(Column | 1) | → | | | | | | Total
(Column | 2) | \rightarrow | | | | | | TOTAL | | | | | | | | Examine | r's Initials | | | | | | # **SECTION A** Answer all questions in the spaces provided. 1 The table below contains some standard enthalpy of formation data. | Substance | C(s) | N ₂ (g) | $H_2O(g)$ | CO ₂ (g) | NH ₄ NO ₃ (s) | |--|------|--------------------|-----------|---------------------|-------------------------------------| | $\Delta H_{\rm f}^{\Theta}/{\rm kJmol}^{-1}$ | 0 | 0 | -242 | -394 | -365 | | (a) | Why are the values of the standard enthalpy of formation for carbon and nitrogen zero? | |-----|--| | | (1 mark) | | (b) | State Hess's Law. | | | | | | (2 marks) | (c) Use $\Delta H_{\rm f}^{\Theta}$ data from the table to calculate a value for the enthalpy change for the following reaction. $$NH_4NO_3(s) + \frac{1}{2}C(s) \rightarrow N_2(g) + 2H_2O(g) + \frac{1}{2}CO_2(g)$$ $\left(\begin{array}{c} \\ \hline 6 \end{array}\right)$ (3 marks) # The Periodic Table of the Elements The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question. 83.8 **Kr** Krypton 36 **Xe** Xenon Helium He **Ar** Argon Chlorine 17 Fluorine Bromine **=** 79.0 **Se** Selenium 34 Polonium 84 Sulphur 16 Oxygen Tellurium 5 Phosphorus 15 Antimony 51 Nitrogen 74.9 **As** As Arsenic 33 Bismuth 121.8 **Sb** > Germanium 32 **Sn** Tin 72.6 **Ge** Carbon <u>S8.1</u> Silicon ≥ Aluminium 13 **Ga** Gallium Thallium Boron Indium 114.8 **–** ≡ 112.4 **Cd** Cadmium **Zn** Zinc Mercury 63.5 **Cu** Copper 29 Platinum 78 Palladium 106.4 **Pd** 58.9 Cobalt Rhodium 102.9 **Rh** Iridium Technetium Ruthenium Osmium Chromium Manganese 24 Rhenium Lithium ⋍ Tungsten 74 Molybdenum relative atomic mass Vanadium Niobium Tantalum 92.9 **ND** atomic number Zirconium 40 Titanium Lanthanum Hafnium 178.5 **H** Key Scandium Yttrium Actinium Magnesium Strontium Calcinm Beryllium Barinm Radium Potassium 19 Rubidium Francium Hydrogen Sodium Caesium Lithium | - | 140.1
Ce | 140.9
Pr | 144.2
Nd | 144.9
Pm | 150.4
Sm | 150.4 152.0 157.3 15
Sm Eu Gd | 157.3
Gd | 158.9
Tb | 158.9 162.5 164.9 16
Tb Dy Ho | 164.9
Ho | 7.3
E | 168.9
Tm | 173.0
Yb | 168.9 173.0 175.0 Tm Yb Lu | |--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------------------|--------------------|--------------------|---|--------------------|-----------------|--------------------|--------------------|-----------------------------------| | | Cerium | Praseodymiun | η Neodymium Pr | ometh | Samarium | Europium | Gadolinium | Terbium | Dysprosium | Holmium | Erbiu | Thulium | Ytterbium | Lutetium | | | 28 | 29 | 09 | 61 | 62 | 63 | 64 | 65 | 99 | | | 69 | 20 | 71 | | | 232.0 | 231.0 | 238.0 | 237.0 | 239.1 | 243.1 | 247.1 | 247.1 | 252.1 | (252) | 97) | (258) | (259) | (260) | | + 00 t | ᄕ | Ра | - | о
Х | D | Am | S | ᄷ | ັວ | ES | Ē | ğ | 2 | ڈ | | 90 - 102 Acillides | Thorium | Thorium Protactinium | n Uranium | Neptuni | Plutonium | Americium | Curium | Berkelium | Californium | Einsteinium | ermi | Mendelevium | Nobelium | Lawrencium | | | 06 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 86 | 66 | 0 | 101 | 102 | 103 | **Table 1** Proton n.m.r chemical shift data | Type of proton | δ/ppm | |---------------------|---------| | RCH_3 | 0.7–1.2 | | R_2CH_2 | 1.2–1.4 | | R_3 CH | 1.4–1.6 | | RCOCH ₃ | 2.1–2.6 | | ROCH ₃ | 3.1–3.9 | | RCOOCH ₃ | 3.7–4.1 | | ROH | 0.5–5.0 | **Table 2** Infra-red absorption data | Bond | Wavenumber/cm ⁻¹ | |----------------|-----------------------------| | С—Н | 2850-3300 | | С—С | 750–1100 | | C=C | 1620–1680 | | C=O | 1680–1750 | | С—О | 1000-1300 | | O—H (alcohols) | 3230–3550 | | O—H (acids) | 2500-3000 | 2 The table below contains some mean bond enthalpy data. | Bond | Н—Н | С-С | C=C | N≡N | N-H | |---|-----|-----|-----|-----|-----| | Mean bond enthalpy/kJ mol ⁻¹ | 436 | 348 | 612 | 944 | 388 | | (a) | Expl | ain the term mean bond enthalpy. | |-----|-------|--| | | ••••• | | | | | | | | ••••• | | | | | (2 marks) | | (b) | (i) | Write an equation for the formation of one mole of ammonia, NH ₃ , from its elements. | | | | | | | (ii) | Use data from the table above to calculate a value for the enthalpy of formation of ammonia. | | | | | | | | | | | | | | | | (4 marks) | (c) Use the following equation and data from the table above to calculate a value for the C–H bond enthalpy in ethane. H H H H H H C=C + H-H $$\rightarrow$$ H-C-C-H $\Delta H = -136 \text{ kJ mol}^{-1}$ H H H H H | Γ. | 1 H | н н | | |-------|-----|-----|-----------| | | | | | | | | | | | ••••• | ••••• | | | •••••• | | | | | | | | | | | | | | | (3 marks) | 9 Turn over | 3 | (a) | Define the term <i>activation energy</i> for a reaction. | | |---|-----|--|---------| | | | | ••• | | | | (2 mark | :s) | | | (b) | Give the meaning of the term <i>catalyst</i> . | | | | | | ••• | | | | (2 mark | :s) | | | (c) | Explain in general terms how a catalyst works. | | | | | | ••• | | | | (2 mark |
(S) | (d) In an experiment, two moles of gas W reacted completely with solid Y to form one mole of gas Z as shown in the equation below. $$2W(g) + Y(s) \rightarrow Z(g)$$ The graph below shows how the concentration of ${\bf Z}$ varied with time at constant temperature. - (i) On the axes above, sketch a curve to show how the concentration of ${\bf W}$ would change with time in the same experiment. Label this curve ${\bf W}$. - (ii) On the axes above, sketch a curve to show how the concentration of **Z** would change with time if the reaction were to be repeated under the same conditions but in the presence of a catalyst. Label this curve **Z**. - (iii) In terms of the behaviour of particles, explain why the rate of this reaction decreases with time. | ••••• | ••••• | ••••• | •••••• | ••••• | |-------|-------|-------|--------|-------| | | | | | | | | | | | | (6 marks) $$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) \quad \Delta H = -91 \text{ kJ mol}^{-1}$$ The process operates at a pressure of $5\,\mathrm{MPa}$ and a temperature of $700\,\mathrm{K}$ in the presence of a copper-containing catalyst. This reaction can reach dynamic equilibrium. | (a) | By reference to rates and concentrations, explain the meaning of the term dynamic equilibrium. | |-----|---| | | | | | (2 marks) | | (b) | Explain why a high yield of methanol is favoured by high pressure. | | | | | | (2 marks) | | (c) | Suggest two reasons why the operation of this process at a pressure much higher than 5 MPa would be very expensive. | | | Reason 1 | | | Reason 2 | | | (2 marks) | | (d) | State the effect of an increase in temperature on the equilibrium yield of methanol and explain your answer. | | | Effect | | | Explanation | | | | | | (3 marks) | | (e) | If a catalyst were not used in this process, the operating temperature would have to be greater than 700 K. Suggest why an increased temperature would be required. | | | (1 mark) | | (a) | State and explain the trend in electronegativity down Group VII from fluorine to iodine. | | | | |-----|--|---|--|--| | | Tren | d | | | | | Explanation | | | | | | | (3 marks) | | | | (b) | (i) | Describe what you would observe when an aqueous solution of bromine is added to an aqueous solution containing iodide ions. Write an equation for the reaction occurring. | | | | | | Observation | | | | | | Equation | | | | | (ii) | Explain why bromine does not react with aqueous chloride ions. | | | | | | | | | | | | (3 marks) | | | | (c) | | ribe what you would observe when aqueous silver nitrate is added to separate ous solutions of potassium fluoride and potassium bromide. | | | | | Obse | rvation with KF(aq) | | | | | Obse | rvation with KBr(aq) | | | | | | (2 marks) | | | | (d) | Write
sulph | e an equation to show how solid potassium fluoride reacts with concentrated nuric acid. | | | | | ••••• | (1 mark) | | | | (e) | Write acid. | e an equation for the redox reaction of sodium bromide with concentrated sulphuric | | | | | ••••• | (2 marks) | | | | (a) | In acidic conditions, hydrogen peroxide, H_2O_2 , oxidises iodide ions to iodine. The hydrogen peroxide is reduced to water. In H_2O_2 , oxygen has an oxidation state of -1 . | | | | |---|--|---|--|--| | | (i) | Construct a half-equation for the reduction of hydrogen peroxide to water in acidic conditions. | | | | | | | | | | | (ii) | Construct a half-equation for the oxidation of I ⁻ ions to iodine. | | | | | (iii) | Construct an equation for the overall reaction. | | | | | | (3 marks) | | | | (b) The concentration of an aqueous iodine solution can be determined by aqueous sodium thiosulphate. In a titration, 25.0 cm ³ of an aqueous i reacted with exactly 19.5 cm ³ of a 0.120 mol dm ⁻³ solution of sodium thios | | | | | | | (i) | Write an equation for the reaction between iodine and thiosulphate ions. | | | | | | | | | | | (ii) | Calculate the concentration of the iodine solution. | | | | | | (If you are unable to answer part $(b)(i)$, assume that one mole of iodine reacts with three moles of thiosulphate ions. This is not the correct ratio.) | (5 marks) | | | | | | hydr (i) (ii) (iii) (b) The aque react (i) | | | (c) Chlorine reacts with water as shown in the following equation. $$Cl_2 + H_2O \implies Cl^- + HClO + H^+$$ In this reaction, chlorine acts both as an oxidising agent and as a reducing agent. Construct a half-equation for the reduction of chlorine to chloride ions. - - (ii) Deduce the oxidation state of chlorine in HClO. - (iii) Construct a half-equation for the oxidation of chlorine, in reaction with water, to form HClO and H⁺ ions. - (iv) Give **one** reason why chlorine is used in the water industry. (4 marks) 12 TURN OVER FOR THE NEXT QUESTION # **SECTION B** Answer the question below in the space provided on pages 12 to 16 of this booklet. - 7 In this question, credit will be given for appropriate equations. - (a) Describe the process by which titanium metal is extracted from titanium(IV) oxide. Explain why this extraction process causes titanium to be an expensive metal. (11 marks) - (b) Explain how the impurity silicon(IV) oxide is removed during the extraction of iron in the Blast Furnace. - Discuss the chemical reactions by which impurities are removed from iron in the basic oxygen converter. (13 marks) - (c) Describe how scrap iron is recycled. Discuss the social and environmental benefits of this recycling. (6 marks) # **END OF QUESTIONS** |
 | |------| | | | | | | |
 | | | | | | | | | | | | | | | | |